
Secure Matchmaking Protocol

Byoungcheon Lee and Kwangjo Kim

Information and Communications University,
58-4, Hwaam-dong, Yusong-gu, Taejon, 305-348, Korea

{sultan,kkj}@icu.ac.kr

Abstract. Matchmaking protocol is a procedure to find matched pairs
in registered groups of participants depending on their choices, while
preserving their privacy. In this study we define the concept of match-
making and construct a simple and efficient matchmaking protocol under
the simple rule that two members become a matched pair only when they
have chosen each other. In matchmaking protocol, participant’s privacy
is of prime concern, specially losers’ choices should not be opened. Our
basic approach to achieve privacy is finding collisions among multiple
secure commitments without decryption. For this purpose we build a
protocol to find collisions in ElGamal ciphertexts without decryption
using Michels and Stadler’s protocol [MS97] of proving the equality or
inequality of two discrete logarithms. Correctness is guaranteed because
all procedures are universally verifiable.

Keywords: matchmaking, secure multiparty computation, proof
of knowledge, proving the equality or inequality of two discrete
logarithms, finding collisions without decryption, public com-
mitment.

1 Introduction

Consider a set of parties who trust neither other entities nor the channels by
which they communicate. The parties wish to correctly compute some common
function of their local inputs, while keeping their local data as private as pos-
sible. This is the problem of secure multiparty computation [Yao82], [GMW87],
[CCD88], [BGW88], [Can96], [Gol98], [Cra99], which has fundamental impor-
tance in cryptography and is relevant to many distributed cryptographic appli-
cations such as electronic cash, voting, auction, and so on.

In this study we consider a problem of finding matched pairs in registered
groups of participants depending on their choices, while preserving their privacy.
This is an interesting example of secure multiparty computation where the com-
mon function is finding matched pairs in the registered groups of participants
and local data are participants’ choices.

There is a popular TV program in Korea which performs matchmaking be-
tween two registered groups of men and women. In the program all participants
commit their choices to a host secretly, but in the opening stage the host opens
all the choices and decides couples. The established couple members are OK

for opening their choices, but losers may wish that their choices might not be
opened if possible. A loser can have another chance to participate in matchmak-
ing and in that case his or her previous choice is important private information.
So secrecy of commitment is a prime security issue in this case.

Another example can be found in setting up project teams in a class. The lec-
turer of the class tries to permit students to form project teams of two members
if they want each other. The choices of established team members are published,
but losers who could not form a team may wish that their choices might not be
opened if possible.

In this study we consider a typical model of secure matchmaking protocol
which is used to set up couples among m male members Mi(i = 1, ...,m) and
n female members Fj(j = 1, ...n). The basic rule of matchmaking is that in
commitment stage each participant commits a single choice to TTP secretly and
then in opening stage two participants are decided as a couple only when they
have chosen each other. Our basic approach to provide secrecy of commitment is
finding collisions in ElGamal ciphertexts without decryption. For this purpose we
use Michels and Stadler’s protocol [MS97] of proving the equality or inequality
of two discrete logarithms. Our design provides the secrecy of commitment and
guarantees the correctness of results.

This paper is organized as follows. In section 2, we describe our model of
matchmaking and its security requirements. Then in section 3, we describe some
building blocks such as public commitment, proving the correctness of decryp-
tion, and finding collisions in ElGamal ciphertexts. Using these primitives we
construct a simple and efficient matchmaking protocol in section 4 and provide
its security analysis in section 5.

2 Model of matchmaking

2.1 Definition of terms

In this paper the following terms are used in a specific sense, so we need to define
them more rigorously.

Matchmaking is a protocol to find matched pairs < ai, bj > between two
registered groups of participants A = (a1, ..., am) and B = (b1, ..., bn) which
satisfy < ai, bj >∈ R for a special relation R we try to find.

Established couple is a matched pair < ai, bj >∈ R which is found using the
matchmaking protocol.

Loser is a participant who was not established as a couple. All participants
except the established couple members are losers.

Registered group of participants is the members registered in the match-
making system who participate in the matchmaking process and try to find
a partner there.

Public commitment is a commitment scheme with which a participant com-
mits his or her choice to the public. The correctness of result should be
publicly verifiable.

Collision in ciphertexts is the case that two ciphertexts are probabilistic en-
cryptions of the same message.

Proof of coupling is a proof for the correctness of the established couple.

2.2 Participants and tools

Our matchmaking protocol has the following participants and tools. All partici-
pants are assumed to have own public/private key pairs certified by a certificate
authority(CA).

Male participants: m male members Mi(i = 1, ...,m) want to find partners
among the female members.

Female participants: n female members Fj(j = 1, ..., n) want to find partners
among the male members.

TTP(Host): A trusted third party T is a host of matchmaking and medi-
ates the matchmaking procedure, and it can be modeled as a probabilistic
polynomial-time Turing machine. T receives participants’ public commit-
ments as input and outputs the results of matchmaking and proofs of them.
W.l.o.g., it is assumed that T does not collude with any specific participant.

Bulletin board: It is a public communication channel which can be read by
anybody. Only legitimate participant is allowed to post his or her message
on the specified region of the bulletin board. All participants communicate
via the bulletin board.

2.3 Rule of matchmaking

In this study we consider the following simplified model of matchmaking between
two registered groups of men and women.

– Each participant in a group has a single choice among the participants of
the other group.

– Two participants are decided as a couple only when they have chosen each
other.

In the real world there can be a variety of situations and rules for match-
making. Some possible examples are committing multiple choices, setting up a
team of multiple partners, etc, and each can be a good model for the study of
secure multiparty computation.

2.4 Security requirements

The main security concern of matchmaking is the secrecy of participants’ choices.
A participant wants to keep the secrecy of his or her choice as private as possible
while trying to get any information on others’ choices. Even the established
couple members may want to know who else have chosen him or her except the
current partner. A loser may want to know who have chosen him or her, because

it can be important information for the next round of matchmaking while it is
also private information for the loser. Therefore secrecy of commitment should
be provided such that malicious participants cannot get any partial information
on others’ choices.

Another scenario is that a participant A can try to help other participant
B, i.e., A helps B to setup a couple < B,C >. If this is possible, B gets to
have two choices against the fairness of the matchmaking rule. So the authen-
ticity of commitment is required and the correctness of result should be publicly
verifiable.

Still another scenario is that a member of an established couple may want
to change his or her mind later and tries to repudiate the result. It is clear that
this should not be allowed.

The security requirements of secure matchmaking protocol can be listed as
follows.

Secrecy(privacy) The choices of participants should not be exposed to others
including TTP in the whole process of matchmaking. Only the choices of
established couple members are published in the opening stage.

Fairness In the commitment stage, anyone cannot be in advantageous posi-
tion than others, i.e., anyone cannot have any partial information on other’s
choice.

Correctness The correctness of the result of matchmaking should be publicly
verifiable.

Authenticity The authenticity of commitment should be provided such that
each registered participant has committed a single choice can be verified.

Non-repudiation The established couple members should not be able to re-
pudiate their commitments later.

3 Building blocks

In this section we describe some building blocks used in the proposed match-
making protocol.

3.1 Notation

The basic cryptographic primitives used in our protocol are ElGamal public key
encryption, digital signature, and zero-knowledge proof, which are commonly
based on the discrete logarithm setting. Let Z∗p denote the multiplicative group
of prime modulo p. We consider a cyclic subgroup of Z∗p of prime order q with
q|(p− 1). Let g be the published generator of the subgroup of order q. TTP has
a certified public key y = gx and its corresponding private key x. In this paper
we use the following notation.

Sigi(m) is a digital signature of a participant i for a message m where the
signature scheme is secure against existential forgery.

Ej(m) is a probabilistic ElGamal encryption of a message m with the partici-
pant j’s public key.

Env(i, j,m) = [Sigi(m)||Ej(m)] is an enveloped message of a plaintext m sent
by a sender i to a recipient j. The plaintext m is signed by the sender i and
encrypted with the recipient j’s public key.

H() is a collision resistant hash function. For security proof, it is considered as
a random oracle.

3.2 Public commitment scheme

Commitment scheme is a digital implementation of a sealed box which is opened
later. In a two party computation, commitment scheme is a two-phase protocol
of commitment and reveal stages, and should satisfy the requirement of secrecy
and unambiguity. The situation in matchmaking protocol is a multiparty com-
putation, so we define a new concept of public commitment scheme where a
message is committed to the public, revealed by the help of TTP, and is publicly
verified.

Definition 1 (Public commitment scheme).
Public commitment scheme is a 3-stage protocol between multiple participants

P1, ..., Pn and a TTP which consists of:

1. Commitment: Multiple participants commit their secure messages to the pub-
lic in a secure way such that only TTP can open it.

2. Reveal: TTP opens the commitments and provides the proofs of results.
3. Verification: Anyone verifies the correctness of the results.

And it satisfies the following requirements:

1. Secrecy: At the end of stage 1, anyone except the sender cannot tell what
value is being sent.

2. Unambiguity: Given a commitment of stage 1, there is at most one value
everybody may accept as valid. It means that the commitment is bound to a
value.

3. Non-malleability: Given a commitment of stage 1, anyone except the sender
cannot generate another legal commitment which has a message related with
the original message.

4. Non-repudiation: Once a participant committed a message to the public in
stage 1, he cannot repudiate it later.

In this study we implement the public commitment scheme using the en-
veloped message defined above. In commitment stage, a participant Pi commits
a message mi to the public as Env(i, T,mi) which is encrypted with TTP’s pub-
lic key. In reveal stage, TTP recovers the message mi and publishes it with a
proof of the correctness of decryption. In verification stage, anyone verifies the
correctness of the message.

Lemma 1. Let P1, ..., Pn be multiple participants and T be a TTP. A commit-
ment scheme using an enveloped message Env(i, T,m) = [Sigi(m)||ET (m)] is a
public commitment scheme between Pi and T .

Proof. (sketch) The probabilistic public key encryption scheme provides secrecy
and unambiguity assuming that T does not collude with participants. Consid-
ering the result of [TY98], the enveloped message(a combination of a public
key encryption and a digital signature) can be considered as a non-malleable en-
cryption scheme. So non-malleability are satisfied. The usage of digital signature
provides non-repudiation. ut

3.3 Proving the correctness of decryption

Firstly we describe the zero-knowledge proof of knowledge protocol for the equal-
ity of two discrete logarithms [CP93], [CGS97]. For universal verifiability, we
consider its non-interactive version using the Fiat-Shamir heuristics [FS87] and
a collision resistant hash function. The 3-move interactive protocol is an honest
verifier zero-knowledge and the security of the non-interactive version is obtained
under the random oracle model[CGS97].

Let α and β be two independent elements of the cyclic group Z∗p of order q,
i.e., nobody knows the relative discrete logarithm logαβ.

Protocol 1. Proving the equality of two discrete logarithms
The prover wants to prove that two elements y = αx and z = βx have the

same discrete logarithm for base α and β, respectively, without exposing x, i.e.,
he wants to prove that logαy = logβz holds. (α, y, β, z) are given as common
input.

Prover
– Chooses k ∈R Z∗q .

– Computes rα = αk, rβ = βk.
– Computes v = H(α, y, β, z, rα, rβ).
– Computes s = k − vx.
– Publishes (rα, rβ , s).

Verifier(anyone)
– Computes v = H(α, y, β, z, rα, rβ).

– Verifies rα
?
= αsyv, rβ

?
= βszv.

Now let the public key of a recipient R be y = gx. When the recipient gets
an ElGamal ciphertext (a, b) = (gk, ykm), he can recover the message m by de-
crypting it with his private key x and prove its correctness by exposing x. If he
wants to prove the correctness of decryption without exposing x, he can do it
using the following protocol.

Protocol 2. Proving the correctness of decryption
Let the public key of a recipient R be y = gx. He wants to prove that m is

the plaintext of a ciphertext (a, b) = (gk, ykm) without exposing the private key
x. He can prove it by showing loggy = loga(b/m) using Protocol 1.

Lemma 2. Protocol 2 proves the correctness of decryption.

Proof. (sketch) The public key y = gx of the recipient R is publicly known. So
showing loggy = loga(b/m) is equivalent to showing b/m = ax, which proves the
correctness of decryption. ut

3.4 Proving the equality or inequality of two discrete logarithms

Assume that the prover knows the discrete logarithm x of y = αx for the base α.
He wants to allow the verifier to decide whether logαy = logβz or logαy 6= logβz
for given group elements β and z, such that no partial information about the
logarithm x is leaked.

Protocol 1 provides only the proof of equality of two discrete logarithms. If
this proof fails, all the arguments of prover are invalid. [MS97] provides the proof
of equality or inequality at the same time. Zero-knowledge interactive proof sys-
tem convinces only the verifier and requires interaction, but in our situation of
matchmaking the prover(host of matchmaking) wants to convince all the par-
ticipants, so we use the non-interactive version of their scheme which provides
universal verifiability.

Protocol 3. Proving the equality or inequality of two discrete loga-
rithms

The prover wants to convince the public whether the two elements y and z
have the same discrete logarithm or not for the base α and β, respectively,
without exposing the discrete logarithm, i.e., he wants to prove that either
logαy = logβz or logαy 6= logβz holds. (α, β, y, z) are given as common input.

Prover(TTP)
– Chooses k, k′ ∈R Z∗q .

– Computes rα = αk, rβ = βk, r′α = αk
′

and r′β = βk
′
.

– Computes v = H(α, y, β, z, rα, rβ , r
′
α, r
′
β).

– Computes s = k − vx and s′ = k′ − vk.
– Publishes (rα, rβ , r

′
α, r
′
β , s, s

′).
Verifier(anyone)

– Computes v = H(α, y, β, z, rα, rβ , r
′
α, r
′
β).

– Verifies rα
?
= αsyv, r′α

?
= αs

′
rvα, r′β

?
= βs

′
rvβ . If the verification fails, stop

the verification process.
– If rβ = βszv, then logαy = logβz. Else if rβ 6= βszv, then logαy 6= logβz.

3.5 Finding collisions in ElGamal ciphertexts

When TTP has a public key y = gx and the corresponding private key x,
the ElGamal encryption of a message m with TTP’s public key y is given by
(a, b) = (gk, ykm) where k ∈R Z∗q . Now assume that TTP has received two ci-

phertexts (a1, b1) = (gk1 , yk1m1) and (a2, b2) = (gk2 , yk2m2). Of course TTP can

recover two messages m1 and m2 using his private key x and publish them, but
TTP wants to convince the public whether the two ciphertexts have the same
message or not, without exposing any partial information on the messages or his
private key x. This task can be obtained as follows using Protocol 3.

Protocol 4. Finding collisions in ElGamal ciphertexts
Let y = gx be TTP’s public key and x be his private key. Given two ElGa-

mal ciphertexts (a1, b1) = (gk1 , yk1m1) and (a2, b2) = (gk2 , yk2m2), TTP wants
to prove whether the two ciphertexts have the same message or not, without
exposing any partial information on the messages or his private key x.

Prover(TTP)
– Computes (a3, b3) ≡ (a1/a2, b1/b2) = (gk1−k2 , yk1−k2m1/m2).
– Proves that loggy = loga3b3 or loggy 6= loga3b3 using Protocol 3.

Verifier(anyone)
– If loggy = loga3b3, then m1 = m2. Else if loggy 6= loga3b3, then m1 6= m2.

Lemma 3. Protocol 4 proves whether two ciphertexts (a1, b1) and (a2, b2) have
the same plaintext or not.

Proof. (sketch) TTP’s public key y = gx is publicly known. So proving loggy
?
=

loga3b3 is equivalent to proving ax3
?
= b3, which proves m1

?
= m2. ut

Protocol 4 can be used in wide range of applications where just the proof of
equality or inequality of plaintext is required while the plaintext should not be
recovered.

4 Proposed matchmaking protocol

In this section we describe our matchmaking protocol which is constructed using
the primitives described above. The participants are m male members Mi(i =
1, ...,m), n female members Fj(j = 1, ..., n) and a host T . They use the bulletin
board as a public communication channel.

The proposed matchmaking protocol consists of 5 stages: registration, com-
mitment, opening, proof of coupling, and verification. In the sequel we will de-
scribe the case that Mi and Fj have chosen each other for the ease of description.

Stage 1. Registration
Any applicant who wants to participate in matchmaking should register to

T . Each participant does the following steps:

– Mi chooses a random number ai ∈R Z∗q and computes his temporal ID
mi = gai . Likewise Fj chooses a random number bj ∈R Z∗q and computes

her temporal ID fj = gbj .
– Mi presents to T his name, his public key with certificate, and his temporal

ID. Likewise Fj presents to T her name, her public key with certificate, and
her temporal ID.

– T publishes these information on the bulletin board.

Stage 2. Commitment (by participants)
In commitment stage each participant chooses a member from the other

group as a possible partner, generates a couple ID for the choice, generates a
public commitment by encrypting the couple ID with TTP’s public key, and
posts it on the bulletin board. Note that each participant is allowed to commit
a single choice.

To generate the couple ID, we use the Diffie-Hellman key agreement tech-

nique. A couple ID between Mi and Fj is given by CID(Mi, Fj) = H(m
bj
i) =

H(faij) = H(gaibi), and it can be computed only by Mi and Fj .
Each participant does the following steps:

– Chooses a possible partner from the other group.
– Computes a couple ID for the choice. If Mi has chosen Fj , he generates his

couple ID with his random number ai and the partner’s published temporal
ID fj such that CID(Mi, Fj) = H(faij).

– Generates a public commitment for the choice and posts it on the bulletin
board. Mi’s public commitment is given by Env(i, T, CID(Mi, Fj)).

Stage 3. Opening (by TTP)
When the deadline of commitment has passed, TTP tries to find couples using

Protocol 4 for every possible pairs of participants (Mi, Fj) where i = 1, ...,m and
j = 1, ..., n. TTP posts the results and their proofs on the bulletin board.

For the established couple members, TTP additionally decrypts their com-
mitments and publishes the couple IDs, which demonstrate that the two com-
mitments are equal. TTP proves the correctness of his decryption using Protocol
2.

TTP does the following steps:

– TTP tries to find couples for every possible pairs (Mi, Fj) using Protocol 4
and posts all the results and proofs on the bulletin board.

– For the established couple members, TTP decrypts their public commitments
to get the colliding couple ID and publishes them on the bulletin board. He
provides proofs of correctness of the decryptions using Protocol 2.

Stage 4. Proof of coupling (by established couple members)
The participants who were published as a couple in the opening stage have to

show that the colliding couple ID is authentic. A simple way to prove it is showing
the random number corresponding to participant’s temporal ID. CID(Mi, Fj)
can be proven authentic by verifying CID(Mi, Fj) = H(faij) if Mi opens ai or

by verifying CID(Mi, Fj) = H(m
bj
i) if Fj opens bj .

If the established couple members do not want to open their secret random
numbers, the authenticity of CID(Mi, Fj) can be proven using Protocol 2. Mi

can prove loggmi = logfj (CID(Mi, Fj)) without exposing ai.
One of the couple members cannot repudiate his or her commitment while

the other member does not want to repudiate, because both of them can prove

the authenticity of CID(Mi, Fj). If both of them refuse to prove it(changed their
mind together), they will not be decided as a couple. Based on their proofs of
coupling, everyone can verify the correctness of coupling.

Stage 5. Verification (by anyone)
Anyone can verify the correctness of results by:

– Verify the correctness of TTP’s opening in stage 3.
– Verify the authenticity of the colliding couple ID published in stage 4.
– Verify the couple member’s signature for the public commitments posted in

stage 2.

5 Security analysis

Our proposed matchmaking protocol satisfies all the listed security requirements.

Theorem 1. The proposed matchmaking protocol is secure in the sense that it
satisfies secrecy, fairness, correctness, authenticity, and non-repudiation.

Proof. (sketch)

Secrecy(privacy) All the commitments are encrypted with TTP’s public key.
So if TTP does not help, any participant cannot get any partial informa-
tion on the choices of others. Although TTP can decrypt a commitment, he
cannot get any information on the choice without help of the specific couple
members. Under the computational Diffie-Hellman assumption, identifying
the couple (Mi, Fj) from H(gaibj) is computationally infeasible. Only the
choices of established couple members are published by TTP in the opening
stage.

Fairness If TTP does not help, anyone cannot be in advantageous position
than others in the commitment stage. If TTP helps a participant by secretly
opening other group member’s commitment, he can check whether there is
any choice for him by trying all the possible pairs.

Correctness Correctness of result is guaranteed because all the procedures
are publicly verifiable. In opening stage, TTP tries to find couples for every
possible pairs of participants and provides the proofs of result using Pro-
tocol 4 whose correctness is given by Lemma 3. For the established couple
members, TTP additionally decrypts their commitments and publishes the
colliding couple ID. TTP proves the correctness of his decryption using Pro-
tocol 2 whose correctness is given by Lemma 2. In proof of coupling stage,
the established couple members prove the authenticity of the colliding couple
ID by showing their random number.

Authenticity In commitment stage, public commitment is signed by the sender.
It guarantees the authenticity of commitment and the fact that each regis-
tered participant has committed a single choice is verified.

Non-repudiation In commitment stage, the committed message is signed by
the sender. So the established couple members cannot repudiate their com-
mitments later. In proof of coupling stage, one of the couple member cannot
repudiate the commitment while the other member does not want to repudi-
ate because both of them can prove the authenticity of the colliding couple
ID.

ut

We can consider a situation when TTP is not honest. If TTP decrypts the
public commitments and exposes them intentionally, each pair of participants
can check whether the other participant has chosen him or her because both
of them can generate the corresponding couple ID. Therefore TTP should not
decrypt the commitments and expose them.

Our proposed matchmaking scheme requires O(mn) computation in open-
ing stage because TTP has to try to find couples for every possible pairs of
participants. Enhancing the efficiency of the protocol is left as further study.

6 Conclusion

We introduce a secure matchmaking protocol as a new application of secure
multiparty computation and construct a simple and efficient protocol under the
simple rule that two participants become a couple only when they have cho-
sen each other. To implement it, we use various primitives of zero-knowledge
proofs: proving the correctness of decryption, proving the equality or inequality
of two discrete logarithms, and finding collisions in ElGamal ciphertexts. We
also define the concept of public commitment scheme and show that enveloped
message(a combination of public key encryption and digital signature) can be
used for public commitment. Our basic approach is that participants commit
their choices secretly by encrypting them with TTP’s public key and TTP tries
to find collisions in ElGamal ciphertexts without decryption.

The main security issue is the honesty of TTP which was assumed in this
study. If TTP colludes with a participant, he can get partial information on other
participants’ choices. The computational load of TTP in opening stage is O(mn)
because he has to try to find couples for every possible pairs of participants. In
this sense more intensive study to enhance the efficiency of the protocol will be
challenging very much.

To the best of our knowledge, this is the first trial which applies cryptographic
primitives to the problem of matchmaking. We believe that our result can play
a significant role for narrowing the gap between cryptographic theory and real
multiparty applications.

References

[BGW88] M. Ben-Or, S. Goldwasser and A. Wigderson, “Completeness theorems
for non-cryptographic fault-tolerent distributed computation”, 20th STOC,
pages 1–10, 1988.

[Can96] R. Canetti, “Studies in Secure Multiparty Computation and Applications”,
PhD Thesis, The Weizmann Institute of Science, 1996.

[CCD88] D. Chaum, C. Crepeau and I. Damgard, “Multiparty unconditionally secure
protocols”, 20th STOC, pages 11–19, 1988.

[CGS97] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure an optimally ef-
ficient multi-authority election schemes”, In Advances in Cryptology – Eu-
rocrypt ’97, LNCS Vol. 1233, pages 103–118, Springer-Verlag, 1997.

[CP93] D. Chaum and T. Pedersen, “Wallet databases with observers ”, In Advances
in Cryptology – Crypto’92, LNCS Vol. 740, pages 89–105, Springer-Verlag,
1993.

[Cra99] R. Cramer, “Introduction to Secure Computation”, In Lectures on Data Se-
curity - Modern Cryptology in Theory and Practice, Ivan Damgaard (Ed.),
Springer LNCS Tutorial, vol.1561, pages 16–62, 1999.

[FS87] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to iden-
tification and signature problems”, In Advances in Cryptology - Crypto’86,
pages 186–194, Springer-Verlag, 1987.

[Gol98] O. Goldreich, “Secure Multi-Party Computation”, Manuscript version 1.1,
1998.

[GMW87] O. Goldreich, S. Micali and A. Wigderson, “How to play any mental game”,
19th STOC, pages 218–229, 1987.

[MS97] M. Michels and M. Stadler, “Efficient convertible undeniable signature”,
Proc. of 4th annual workshop on selected areas in cryptography, 1997.

[TY98] Y. Tsiounis and M. Yung, “On the Security of ElGamal Based Encryption”,
PKC’98, LNCS 1431, pages 117-134, Springer-Verlag, 1998.

[Yao82] A. Yao, “Protocols for Secure Computation”, 23th FOCS, pages 160–164,
1982.

