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Abstract. A design of secure and efficient public key encryption schemes
under weaker computational assumptions has been regarded as an im-
portant and challenging task. As far as the ElGamal-type encryption
is concerned, some variants of the original ElGamal encryption scheme
whose security depends on weaker computational assumption have been
proposed: Though the security of the original ElGamal encryption is
based on the decisional Diffie-Hellman assumption (DDH-A), the secu-
rity of recent schemes such as Pointcheval’s ElGamal encryption variant
is based on the weaker assumption, the computational Diffie-Hellman
assumption (CDH-A). In this paper, we propose a length-saving ElGa-
mal encryption variant whose security is based on CDH-A and analyze
its security in the random oracle model. Our scheme is length-efficient
and provably secure which provides a shorter ciphertext than that of the
Pointcheval’s scheme and a formal proof of security against the chosen-
ciphertext attack.

1 Introduction

1.1 Encryption Schemes Based on Diffie-Hellman Assumption

Since Diffie and Hellman[9] proposed the concept of public-key cryptosystem,
extensive researches has been done in this field. In particular, the public-key
encryption scheme proposed by ElGamal[10] has attracted considerable atten-
tion. When ElGamal proposed his public-key encryption scheme, it was widely
believed that the security of this scheme is based on the computational assump-
tion called “Diffie-Hellman assumption”. Roughly speaking, the Diffie-Hellman
assumption says that for a cyclic group G, an adversary who sees gx and gy

cannot efficiently compute gxy. Often, G is defined as a multiplicative group of
a large prime modulo p, i.e., Z∗p where g is a generator and x, y ∈ Zq. Note here
that q is a large prime such that q|p− 1.

It may be true that the security of ElGamal encryption scheme depends on
the Diffie-Hellman assumption since an adversary attacking this scheme can-
not decrypt a ciphertext (gy,mgxy) of a message m without computing gxy.
However, indistinguishability[12], which has been accepted as a general security
notion of encryption schemes, does not require the attacker to decrypt the whole
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message. In the notion of the indistinguishability, security of encryption scheme
implies that the adversary cannot distinguish ciphertexts of two messages cho-
sen by himself. Consequently, it seems that the security of ElGamal encryption
should depend on some stronger assumption rather than the Diffie-Hellman as-
sumption. In fact, Tsiounis and Yung[14] showed that the security of ElGamal
encryption scheme is not based on the Diffie-Hellman assumption but based on
the stronger Decisional Diffie-Hellman assumption(DDH-A). DDH-A says that
an adversary who sees two distributions (gx, gy, gxy) and (gx, gy, R), where R is
a randomly chosen-string whose length is the same as gxy, cannot distinguish
these two distributions. Hence the Diffie-Hellman assumption is often called the
computational Diffie-Hellman assumption(CDH-A) for the purpose of emphasiz-
ing an adversary’s inability to compute the Diffie-Hellman key, gxy. Throughout
this paper, we use the term CDH-A to refer to the Diffie-Hellman assumption.

1.2 Chosen Ciphertext Security

Since Zheng and Seberry[15] initiated a full-scale research on adaptive chosen-
ciphertext attacks, the design of public-key encryption schemes has trended to-
ward the prevention of these attacks. In the adaptive chosen-ciphertext attack,
an adversary is permitted to access a decryption function as well as an encryp-
tion function. The adversary may use this decryption function on ciphertexts
chosen after obtaining the challenge ciphertext, with the only restriction that
the adversary may not ask for the decryption of the challenge ciphertext itself.

Several security notions on the (adaptive or non-adaptive) chosen-ciphertext
attack including non-malleability[8] were formalized and the relationship among
them was shown in [3]. Public-key encryption schemes secure against the adap-
tive chosen-ciphertext attack proposed so far include OAEP[5] (based on the
RSA function), the Cramer-Shoup scheme[7] (based on the DDH-A), DHAES[1]
(based on the hash Diffie-Hellman assumption(HDH-A)), and the Fujisaki-
Okamoto(F-O) scheme[11] (based on the security of any semantically secure
public-key encryption schemes). More recently, a general method for converting
any partially trapdoor one-way function to the public-key encryption scheme
that is secure against the chosen-ciphertext attack was proposed by Pointcheval[13].

The Cramer-Shoup scheme is said to be unique since it does not impose any
ideal assumption on the underlying hash function as other schemes do. Though
the use of the ideal hash function model, i.e., the random oracle model[4], is still
controversial[6], this paradigm often yields much more efficient schemes than
those in the standard model[2].

We note here that the underlying computational assumption of Cramer-
Shoup scheme is DDH-A, which is much stronger than CDH-A, though the
random oracle model is not used in the this scheme. The situation remains the
same in the ElGamal version of the F-O scheme. However, underlying compu-
tational assumption of the ElGamal version of recent Pointcheval’s scheme is
CDH-A, which is weaker than DDH-A. On the other hand, one deficiency of
this scheme is a message expansion: To encrypt a message m, one must compute
(gH(m||s), rXH(m||s), G(r)⊕ (m||s)), where X(= gx) is a public key, r ∈ Z∗p and
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s ∈ Zq are appropriate length of random strings. Here, both G and H are random
oracles. Consequently, the length of a ciphertext is 1.5 times longer than that
of the original ElGamal version of the F-O scheme. In this paper, we propose
another ElGamal encryption variant provably secure against chosen-ciphertext
attack in the random oracle model. The underlying computational assumption of
our scheme is based on CDH-A, but the length of ciphertext is reduced compared
with the Pointcheval’s scheme.

The organization of this paper is as follows: We briefly review the notions
of chosen-ciphertext security for public-key encryption schemes in Section 2. In
Section 3, we describe our proposed scheme and analyze its security. In Sec-
tion 4, comparison of our scheme with other ElGamal variants is provided and
concluding remarks will follow in the final section.

2 Some Preliminaries

2.1 CDH-A with a Random Oracle

Recall that CDH-A implies an adversary’s inability to compute gxy seeing gx and
gy. Though the adversary sees gx, gy, and H(gxy) where H is a random oracle,
he still cannot compute gxy with the same degree as seeing gx and gy. Since H is
assumed to be a random oracle, H(gxy) does not reveal any (partial) information
about gxy. Namely, H(gxy) does not provide any advantage for computing gxy

to the adversary. This equivalent version of CDH-A will be used in the proof in
Section 3.

2.2 Notions of Security

Though there are several security notions on the chosen-plaintext and the chosen-
ciphertext attacks, we briefly review two notions, the indistinguishability-chosen
plaintext attack(IND-CPA) [3, 12] and the plaintext awareness(PA)[3, 5].

Security against the chosen-plaintext attack for public-key encryption schemes
is defined by using the following experiment: Let A be an adversary with two
algorithms A1 and A2. The “find”-stage algorithm A1 is run on the public key,
pk. At the end of A1’s execution, it outputs a triple (m0,m1, s) where m0 and
m1 are messages that have the same length and s is a state information. Then
one of m0 and m1 is selected at random and ciphertext y is determined by en-
crypting mb (b ∈R {0, 1}) under pk. The job of the “guess”-stage algorithm A2

is to determine if y was selected as the encryption of m0 or m1, namely to de-
termine the bit b. If a probability that A2 outputs b is negligible, we say that
the public-key encryption scheme is secure in the sense of IND-CPA. Now, we
formally define this experiment as follows:

Definition 1 (IND-CPA). Let Π = (K, E ,D) be a public-key encryption scheme,
where K, E,and D denote a key generation algorithm, encryption algorithm, and
decryption algorithm, respectively. Let A(A1, A2) be an adversary where A1 de-
notes a “find”-stage algorithm and A2 denotes a “guess”-stage algorithm. Also,
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let (sk, pk) be a secret and public key pair and let s be a state information. If
the advantage of A

AdvIND−CPA
A,Π = 2 · [(sk, pk)← K; (m0,m1, s)← A1(find, s); b← {0, 1};

y ← Epk(mb) : A2(guess, pk, s, y) = b]− 1

is negligible, we say that Π is secure in the sense of IND-CPA.

The plaintext awareness(PA), first defined by Bellare and Rogaway[5], for-
malizes an adversary’s inability to create the ciphertext y without “knowing” its
corresponding plaintext x.

We note that PA has only been defined in the random oracle model. An
adversary B for PA is given a public key pk and access to the random oracle H.
We also provide B with an oracle for EHpk. The adversary outputs a ciphertext
y. To be PA, the adversary B should necessarily know the decryption m of
its output. To formalize this, it is required that there exists an algorithm K
(knowledge extractor) that could have output m just by looking at the public
key, B’s H-queries and the answers to them, and the answers to B’s queries to
EHpk. The following is a formal definition of PA.

Definition 2 (PA). Let Π = (K, E ,D) be a public-key encryption scheme, let B
be an adversary, let hH = {(h1, H1), (h2, H2), . . . , (hqH , HqH )} be a list of all of
B’s oracle queries, h1, h2, . . . , hqH , and the corresponding answers H1, H2, . . . ,
HqH , and let K be a knowledge extractor. Let C = {y1, y2, . . . , yqH} denote the
answers(ciphertexts) as a result of EHpk-queries. For any k ∈ N define

SuccPAK,B,Π = Pr[H ← Hash; (pk, sk)← K; (hH,C, y)← runBH,E
H
pk(pk) :

K(hH,C, y, pk) = DH
sk(y)].

For y /∈ C, we say that K is a λ(k)-extractor if K has running time polynomial
in the length of its inputs and for every B, SuccPAK,B,Π ≥ λ(k). We say that Π
is secure in the sense of PA if Π is secure in the sense of IND-CPA and there
exists a λ(k)-extractor K where 1− λ(k) is negligible.

3 Secure Length-saving ElGamal Encryption Variant

3.1 Description of Our Scheme

To provide security against the chosen-plaintext attack under CDH-A, we apply
a random oracle G to the Diffie-Hellman key XH(m||s). Also, to provide PA, we
apply another random oracle H to message m concatenated by some random
string s. A concrete description of our scheme Π is as follows:
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Secure Length-saving ElGamal Encryption Variant Π = (K, E ,D)

– Key generator K
(pk, sk) ← K(1k), pk = (p, q, g,X(= gx)) and sk = (p, q, g, x) where x ∈R
Zq, |p| = k = k0 + k1, and q|p− 1, a large prime number.

– Hash Function (two random oracles)
H : {0, 1}k → Zq, and G : Z∗p → {0, 1}k

– Encryption E
Epk(m, s) = (α, β) = (gH(m||s), G(XH(m||s) mod p)⊕ (m||s)), where message
m ∈ {0, 1}k0 and s←R {0, 1}k1

– Decryption D

Dsk(α, β) =

{
[β ⊕G(αx mod p)]k0 if α = gH(β⊕G(αx mod p))

ε(null) otherwise

where [β ⊕G(αx mod p)]k0 denotes the first k0 bit of [β ⊕G(αx mod p)].

3.2 Security Analysis

In this section, we show that our ElGamal encryption variant is secure in the
sense of IND-CPA under CDH-A and there exists a knowledge extractor K. Note
that the security in the sense of IND-CPA and the existence of a knowledge
extractor mean the security in the sense of PA. By the result of [3], this implies
security against the adaptive chosen-ciphertext attack(IND-CCA2)

Theorem 1. If there exists an adversary attacking the encryption scheme Π =
(K, E ,D) in a chosen-plaintext scenario, we can construct an adversary that
breaks CDH-A in the random oracle model with non-negligible probability.

Proof. Let A = (A1, A2) be an adversary attacking Π = (K, E ,D) in a chosen-
plaintext scenario and ε be an advantage of A. Recall that A1 denotes the “find”-
stage algorithm and A2 denotes the “guess”-stage algorithm. Assume that both
G and H are random oracles. Our proving strategy is to use A to construct
an adversary B that breaks CDH-A. Suppose that X(= gx), Y (= gy) and T (=
G(Xy)) are given to B. B works as follows:

– Run A. When A1 makes oracle query j to G, B chooses a random string in
{0, 1}k and answers it as G(j). Similarly, if A1 makes oracle query j to H,
B chooses a random string in Zq and answers it as H(j). A finally outputs
two messages m0 and m1. Then B selects b ∈ {0, 1} at random and outputs
X as a public key and (α, β) = (Y, T ⊕ (mb||s)) as a ciphertext.

– The ciphertext (α, β) is inputted to A2. Then, A2 makes oracles queries as
A1 did.

– When A2 returns its answer d ∈ {0, 1}, B returns a set of all the oracle
queries to G.
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Let SuccA be an event that A2 correctly guesses the bit b, i.e., outputs d = b.
Then Pr[SuccA] = 1

2 + ε
2 by definition. Now we define the following two events.

Let AskG be an event that the query Xy was made to G and let AskH be an
event that a query m||s for some message m and s chosen at the beginning by
B, is made to H. Now, define H(mb||s) as y and T (= G(Xy)) as β ⊕ (mb||s).

Now, let us scrutinize A’s advantage ε. Recall that A is given (Y, T⊕(mb||s)).
If the query asked to H is (mb||s), he will succeed. Also, if the query asked to G
is Xy, he will also succeed. That is, A’s advantage ε depends on the event AskG
or AskH. Hence we get

1

2
+
ε

2
=

1

2
+

Pr[AskG ∨AskH]

2
.

Furthermore,

Pr[AskG ∨AskH] ≤ Pr[AskG] + Pr[AskH]

= Pr[AskG] + Pr[AskH|AskG]Pr[AskG]

+Pr[AskH|¬AskG]Pr[¬AskG]

≤ 2 · Pr[AskG] + Pr[AskH|¬AskG]

Yet, the probability that the event AskH takes place is very small provided
that ¬AskG is true. More precisely,

Pr[AskH|¬AskG] ≤ qH
2k1

.

Therefore, we have

Pr[AskG] ≥ ε

2
− qH

2k1+1
.

This implies that the probability that Xy lies in the set of all the oracle
queries to G is greater than ε

2 −
qH

2k1+1 . Hence if the advantage ε of A is non-
negligible, B breaks CDH-A with non-negligible probability. ut

Now we construct a knowledge extractor K. Note that the existence of K
implies security in the sense of PA under the assumption that Π is secure in the
sense of IND-CPA.

Theorem 2. Let B be an adversary for PA. Then there exists a knowledge λ(k)-
extractor K and hence Π = (K, E ,D) is secure in the sense of PA.

Proof. Since we have shown that Π is secure in the sense of IND-CPA, we only
need to construct a knowledge-extractorK. Assume that gG = {(g1, G1), (g2, G2),
. . . , (gqG , GqG)}, hH = {(h1, H1), (h2, H2), . . . , (hqH , HqH )}(all the random ora-
cle query-answer pairs of B), C = {y1, y2, . . . , yE}(a set of ciphertexts that B
has obtained from the interaction with the random oracles and the encryption
oracle), z = (α, β) /∈ C (a ciphertext produced by B which is not in C), and the
public key X are given to K. It works as follows:
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– For all gG and hH, K checks whether there exists a pair (gq, hr) such that
z = (α, β) = (gHr , Gq ⊕ hr).

– If there exists a pair, K returns m = [hr]
k0 and s. Otherwise, outputs ε(null).

Next we think of the probability that K outputs the plaintext m correctly,
namely m = Dsk(y). Let Fail be an event that m 6= D′sk(y) and let AskG be
an event that there exists a pair (gq, Gq) in the list gG such that z = (α, β) =
(gHr , Gq ⊕ hr). Similarly, let AskH denote an event that there exists a pair
(hr, Hr) in the list hH such that z = (α, β) = (gHr , Gq ⊕ hr). Then,

Pr[Fail] = Pr[Fail|AskG ∧AskH]Pr[AskG ∧AskH] +

Pr[Fail|¬AskG ∨ ¬AskH]Pr[¬AskG ∨ ¬AskH]

≤ 0 + Pr[Fail|¬AskG ∨ ¬AskH].

We now determine the upper bound of Pr[Fail|¬AskG ∨ ¬AskH]. For valid y,
there exists h and g such that z = (gH(h), G(g) ⊕ h). As y /∈ C, it follows that
h 6= D(yi) for every yi ∈ C. However,

Pr[valid|¬AskG ∨ ¬AskH] =
Pr[valid ∧ (¬AskG ∨ ¬AskH)]

Pr[(¬AskG ∨ ¬AskH)]

≤ Pr[valid ∧ ¬AskH]

Pr[¬AskH]

+
Pr[valid ∧ ¬AskG ∧ ¬AskH]

Pr[¬AskG]

≤ Pr[valid|¬AskH] + Pr[valid|¬AskG]

≤ 1

2k
+

1

2k1
.

On the other hand, if ¬AskG or ¬AskH is true, from the construction of K,
it always outputs ε(null), i.e., y is invalid. This means that Pr[Fail|¬AskG ∨
¬AskH] = Pr[valid|¬AskG ∨ ¬AskH] ≤ 1

2k
+ 1

2k1
. Namely, the probability of

rejection of valid ciphertext is upper-bounded by 1/2k + 1/2k1 . Consequently,

λ(k) = 1− Pr[Fail] ≥ 1− 1

2k
− 1

2k1
.

ut

As mentioned before, we get the following corollary from Theorems 1 and 2.

Corollary 1. Our scheme is secure in the sense of IND-CCA2.

4 Comparison with Other Schemes

We compare the length of ciphertext of our scheme with the original ElGamal
encryption scheme and other ElGamal-type encryption schemes such as ElGamal
encryption variant of the F-O scheme, and the Pointcheval’s ElGamal encryption
variant.
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For comparison, we briefly describe how four schemes encrypt a message m.

• ElGamal scheme : (gy, Xym)
• F-O scheme : (gH(m||s), XH(m||s) ⊕ (m||s))
• Pointcheval’s scheme : (gH(m||s), XH(m||s)r,G(r)⊕ (m||s))
• Our scheme : (gH(m||s), G(XH(m||s))⊕ (m||s))

We summarize the cryptographic characteristics of four schemes in Table 1.

ElGamal F-O Pointcheval Our scheme

Length 2k 2k 3k 2k

Number of ROs None 1 2 2

Assumption DDH-A DDH-A CDH-A CDH-A

Security IND-CPA IND-CCA2 IND-CCA2 IND-CCA2

Comp. for Enc. 2E 2E+H 2E+2H 2E+2H

Comp. for Dec. E 2E+H 2E+2H 2E+2H

Table 1. Comparison with Other ElGamal Variants, where: k = |Z∗
p|, RO = Ran-

dom Oracle, E= Exponentiation, H= Random oracle computation, Comp. for Enc.=
Computation for Encryption, Comp. for Dec.=Computation for Decryption

As can be seen from the table, our scheme guarantees sound security and
length-efficiency: Under the CDH-A, it is secure in the sense of IND-CCA2.
Now we explain more on the length of a ciphertext. In the F-O scheme, the
length of a ciphertext is 2k where k = |Z∗p|. A ciphertext of our scheme has the
same length as those of the original ElGamal scheme and the F-O scheme when
the length of output of G, which is used as the random oracle, is set to k. In the
Pointcheval’s scheme, the length of ciphertext is extended to 3k. Compared with
the Pointcheval’s scheme, our scheme effectively saves the length of a ciphertext
under the same circumstances - the security of both schemes is based on CDH-A
and two random oracles are used. Note that the message per ciphertext ratio of
the original ElGamal scheme is the biggest since no additional random string
follows the message m being encrypted. However, as already known, the original
ElGamal scheme is insecure against chosen-ciphertext attack. The message per
ciphertext ratios of other three schemes are the same.

For computational efficiency, the computation cost required in our scheme
to encrypt and decrypt messages is estimated to be the same as that of the
Pointcheval’s scheme. We omit the computation required to generate public key
which can be done previously.

Finally, we mention about implementation of the random oracle G. To im-
plement this function, one can use the heuristic method described in [4] and [5]
as follows:

G(Xy) = g(〈0〉, Xy)||g(〈1〉, Xy)||g(〈2〉, Xy)|| . . . ,
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where g is an efficient cryptographic hash function such as SHA-1 or MD5 which
outputs 160 bits or 128 bits respectively and the notation 〈i〉 denotes a binary
32-bit word encoding of integer i.

5 Concluding Remarks

We have proposed another variant of the ElGamal encryption scheme. The secu-
rity of our scheme depends on CDH-A which is much weaker than DDH-A. More-
over, the length of a ciphertext is reduced compared with the recent Pointcheval’s
ElGamal variant which is based on CDH-A. Also, our scheme provides the same
degree of computational efficiency as other proposed schemes.

However, as done in other practical schemes, the random oracle model is
employed to provide provable security. A construction of “practical” public-key
encryption schemes secure against active adversaries without random oracle is,
of course, an interesting and meaningful challenge.

Acknowledgements

The authors would like to thank the anonymous referees for their helpful com-
ments on preparation for the final version of our paper.

References

1. M. Abdalla, M. Bellare, and P.Rogaway, “DHAES: An Encryption Scheme
Based on Diffie-Hellman Problem”, IEEE P1363a Submission, 1998, Available at
http://grouper.ieee.org/groups/1363/addendum.html.

2. M. Bellare, “Practice-Oriented Provable-Security”, In the First International
Workshop on Information Security - Proceedings of ISW’97, LNCS 1396, Springer-
Verlag, 1998.

3. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations Among Notions
of Security for Public-Key Encryption Schemes”, In Advances in Cryptology - Pro-
ceedings of Crypto’98, LNCS 1462, pp.26-45, Springer-Verlag, 1998.

4. M. Bellare and P. Rogaway, “Random Oracles are Practical : A Paradigm for De-
signing Efficient Protocols”, ACM Conference on Computer and Communications
Security, pp.62-73, 1993.

5. M. Bellare and P. Rogaway, “Optimal Asymmetric Encryption - How to Encrypt
with RSA”, In Advances in Cryptology - Proceedings of Eurocrypt’94, LNCS 950,
pp.92-111, Springer-Verlag, 1995.

6. R. Canetti, O. Goldreich, and S. Halevi, “The Random Oracle Methodology, Re-
visited”, Proceedings of the 30th Annual Symposium on the Theory of Computing,
ACM, 1998.

7. R. Cramer and V. Shoup, “A Practical Public Key Cryptosystem Provably Se-
cure Against Adaptive Chosen Ciphertext Attack”, In Advances in Cryptology -
Proceedings of Crypto’98, LNCS 1462, pp. 13-25, Springer-Verlag, 1998.

8. D. Dolev, C. Dwork, and M. Naor, “Non-Malleable Cryptography”, Proceedings of
23rd STOC. , ACM Press 1991.



10 Joonsang Baek et al.

9. W. Diffie and M.Hellman, “New Directions in Cryptography”, IEEE Transactions
on Information Theory, IT-22(6), pp.644-654, 1976.

10. T. ElGamal, “A Public Key Cryptosystems and a Signature Schems Based on Dis-
crete Logarithms”, IEEE Transactions on Information Theory, IT-31(4), pp.469-
472, 1985.

11. E. Fujisaki and T. Okamoto, “How to Enhance the Security of Public-Key Encryp-
tion at Minimum Cost”, PKC’99, LNCS 1560, pp.53-68, Springer-Verlag, 1999.

12. S. Goldwasser and S. Micali, “A Probabilistic Encryption”, Journal of Computer
and System Sciences, 28, pp. 270-299, 1984.

13. D. Pointcheval, “Chosen-Ciphertext Security for any One-Way Cryptosystem”,
PKC’2000, LNCS 1751, pp.129-146, Springer-Verlag, 2000.

14. Y. Tsiounis and M. Yung, “On the Security of ElGamal Based Encryption”,
PKC’98, LNCS 1431, pp.117-134, Springer-Verlag, 1998.

15. Y. Zheng and J. Seberry. “Practical Approaches to Attaining Security Against
Adaptively Chosen Ciphertext Attacks”, In Advances in Cryptology - Proceedings
of Crypto’92, LNCS 740, pp. 292-304, Springer-Verlag, 1993.


