
Article

Stateless One-time Authenticated Session Resumption in TLS
Handshake Using Paired Token

Byoungcheon Lee 1,†,‡ 0000-0002-1741-4192

Citation: Title. Electronics 2021, 1,

0. https://doi.org/

Received:

Accepted:

Published:

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and insti-

tutional affiliations.

Copyright: © 2021 by the author.

Submitted to Electronics for possible

open access publication under the

terms and conditions of the Cre-

ative Commons Attribution (CC

BY) license (https://creativecom-

mons.org/licenses/by/ 4.0/).

1 Department of Information Security, Joongbu University, 305 Dongheon-ro, Goyang-si, 10279 Korea;
sultan@joongbu.ac.kr

Abstract: Transport Layer Security (TLS) is a cryptographic protocol that provides communications1

security between two peers and it is widely used in many applications. To reduce the latency2

in TLS handshake session resumption using pre-shared key (PSK) had been used. But current3

methods in PSK mode handshake uses a fixed session key multiple times for the lifetime of session4

ticket. Reuse of fixed session key should be very careful in the point of communications security.5

It is vulnerable to replay attacks and there is a possibility of tracking users. Paired token (PT) is a6

new secondary credential scheme that provides pre-shared key in stateless way in client-server7

environment. Server issues paired token (public token and secret token) to authenticated client.8

Public token represents signed identity of client and secret token is a kind of shared secret between9

client and server. Once client is equipped with PT, it can be used for many symmetric key based10

cryptographic applications such as authentication, authorization, key establishment, etc. It was11

also shown that it can be used for one-time authenticated key establishment using the time-based12

one-time password (TOTP) approach. In this paper we apply the PT and TOTP approach to TLS13

to achieve stateless one-time authenticated session resumption. Server executes full handshake14

of TLS 1.3 and issues PT to authenticated client. Then client and server can execute one-time15

authenticated session resumption using PT in stateless way in server side. In every runs of session16

resumption distinct session keys are established that the same PT can be used safely for longer17

lifetime. If anonymous PT is used with renewal issuing, user privacy, untraceability and forward18

security can be achieved easily. It will provide a huge performance gain in large-scale distributed19

services.20

Keywords: Transport Layer Security; Handshake; Session resumption; Paired token; Stateless;21

One-time authenticated session resumption; Privacy; Untraceability22

1. Introduction23

Transport layer security (TLS) [1] is a cryptographic protocol that provides end-24

to-end communications security and it is widely used in many applications in the real25

world. The main design goal of TLS is providing authentication, confidentiality, and26

integrity in end-to-end communications. It consists of two sub-protocols; handshake27

protocol and record protocol. In handshake protocol client and server authenticate each28

other and establish a secure session key, and then in record protocol all end-to-end29

communications are encrypted with the secure session key.30

The full handshake protocol of TLS is computationally expensive due to certificate-31

based authentication and Diffie-Hellman key exchange. In recently released TLS 1.332

(RFC8446) [1] reducing latency in handshake protocol was a hot issue. Main approaches33

for reducing latency in handshake were reducing round trip time (RTT) and using34

session resumption with pre-shared key (PSK). If PSK mode is enabled in TLS 1.3, server35

issues NewSessionTicket to authenticated client at the end of a successful full handshake36

and client stores session key and NewSessionTicket. In subsequent connection requests37

client sends NewSessionTicket in PSK extension, then server can recover the previous38

session key and can skip the heavy full handshake.39

Version February 2, 2021 submitted to Electronics https://www.mdpi.com/journal/electronics

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

© 2021 by the author(s). Distributed under a Creative Commons CC BY license.

https://www.mdpi.com
https://orcid.org/0000-0002-1741-4192
https://doi.org/10.3390/electronics1010000
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://doi.org/10.20944/preprints202102.0102.v1
http://creativecommons.org/licenses/by/4.0/

Version February 2, 2021 submitted to Electronics 2 of 13

NewSessionTicket contains PSK identity, either session identifier in session cache or40

self-encrypted PSK in session ticket. Session cache approach is not practical in large-scale41

distributed service, since it requires the management of session cache and the session42

key retrieval is a stateful operation. Self-encrypted PSK in session ticket [2] approach43

has the advantage that it does not require server-side state, but it reuses a fixed session44

key multiple times during the lifetime of the session ticket. Reuse of fixed session key45

should be very careful in the point of communications security. It is also vulnerable to46

replay attacks [3] and denial of service (DOS) attack. There is a possibility of tracking47

users [13].48

Quick UDP Internet Connections (QUIC) is Google’s transport layer security pro-49

tocol that provides secure connections over UDP [8]. To enhance the performance of50

handshake protocol it provides quick session resumption using public key cryptography.51

Recently there is an approach to combine TLS 1.3 and QUIC together, i.e., replace the52

handshake of QUIC with the TLS handshake and PSK-based session resumption [9–12].53

Paired token (PT) is a new secondary credential scheme that provides stateless54

PSK in client-server environment [15,16,19]. Assume that there is an independent55

authentication system using some primary credential. Server authenticates the client56

with the primary credential and then issues paired token (public token and secret token)57

to authenticated client as a secondary credential. Public token has the role of signed58

identity that represents the authenticated state of client. Secret token is a kind of shared59

secret between client and server with a special property that server can compute secret60

token anytime from a given public token, thus server does not need to store issued client61

tokens. This feature provides the stateless management of client credential in server side.62

PT can be applied to many symmetric key based cryptographic applications such as63

authentication, authorization, secure communications, etc. Specially it was shown that it64

can be used for one-time authenticated key establishment using the time-based one-time65

password (TOTP) approach. PT can provide identification of client (with public token),66

time-based one-time authentication of client and key establishment (with secret token)67

in a single logical step. This feature was applied to achieve stateless re-association in68

WPA3 [17,18].69

In this paper we apply the PT-based one-time authenticated key establishment to70

TLS 1.3 to achieve stateless one-time authenticated session resumption. In our approach71

server issues PT to authenticated client after the full handshake is finished successfully,72

and then in subsequent connection requests client uses PT for session resumption.73

The resulting session resumption protocol establishes distinct session keys for every74

connections that the same PT can be used multiple times for longer period of lifetime.75

We show that the proposed session resumption protocol can improve the performance76

of TLS a lot. The proposed scheme has the following distinguished features.77

1. It provides time-based one-time authenticated key establishment in session resump-78

tion in stateless way.79

2. The same PT can be used multiple times for session resumption for longer period80

of lifetime.81

3. It satisfies essential security features such as replay resistance, denial of service82

(DOS) resistance.83

4. With the use of anonymous PT and secure renewal of PT, session resumption84

protocol can provide privacy, untraceability, and forward security.85

5. In large-scale distributed environment it provides huge performance gain and86

scalability with the help of stateless service property.87

This paper is organized as follows. Section 2 reviews TLS 1.3 and paired token.88

Section 3 presents the proposed stateless session resumption protocol in TLS. Section 489

provide security and performance analysis. Finally section 5 concludes the paper.90

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

https://doi.org/10.20944/preprints202102.0102.v1

Version February 2, 2021 submitted to Electronics 3 of 13

2. Related Works91

2.1. TLS 1.392

Secure channel establishment protocols such as Transport Layer Security (TLS) are93

one of the most important cryptographic protocols that enables the security of Internet94

traffic. TLS provides authentication, confidentiality, and integrity in end-to-end com-95

munications. It consists of two sub-protocols; handshake protocol and record protocol.96

In handshake protocol client and server authenticate each other and establish a secure97

session key, and then in record protocol all end-to-end communications are encrypted98

with the secure session key. There are two handshake protocols; full handshake protocol99

for the first time connection and session resumption protocol for the efficient handshake100

with revisiting clients.101

The full handshake protocol of TLS is computationally expensive due to certificate-102

based authentication and Diffie-Hellman key exchange. In recently released TLS 1.3103

(RFC8446) [1] reducing latency in handshake protocol was a hot issue. Main approaches104

for reducing latency in handshake were reducing round trip time (RTT) and using105

session resumption with pre-shared key (PSK) [2].106

Figure 1 shows the full handshake protocol in TLS 1.3. Full handshake consists of 3107

parts; key exchange, server parameter transport, and authentication. Key exchange is the108

first part of the protocol which enables to generate fresh session key using Diffie-Hellman109

key agreement. Server parameter transport is used to send necessary server parameters110

to client. Authentication part is used to provide mandatory server authentication and111

optional client authentication by exchanging certificates and digital signatures. It is a112

heavy handshake due to public key computations in certificate verification, signature113

verification, and DH key agreement, and required round trip time is 2. Heavy full114

handshake is inevitable in initial handshake, but repeating it for every connections is not115

a good idea.116

Figure 1. Full handshake and issuing NewSessionTicket in TLS 1.3 [1].

Figure 2. Session resumption using PSK in TLS 1.3 [1].

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

https://doi.org/10.20944/preprints202102.0102.v1

Version February 2, 2021 submitted to Electronics 4 of 13

2.2. Session Resumption117

If PSK mode is enabled in TLS 1.3, efficient session resumption can be used. Figure118

2 shows the session resumption protocol using PSK. In figure 1 note that server issues119

NewSessionTicket to client at the end of a successful full handshake and client stores120

session key and NewSessionTicket. In subsequent connection requests client sends121

NewSessionTicket in PSK extension, then server can recover the previous session key122

and can skip the heavy full handshake. NewSessionTicket contains PSK identity, either123

session identifier in session cache or self-encrypted PSK in session ticket.124

In session cache approach server stores resumption secrets of recent sessions and125

issues their unique lookup keys to clients. It requires stateful management of PSKs in126

the form of database or cache. Session cache approach is not practical in large-scale127

distributed service, since it requires the management of session cache and the session128

key retrieval is a stateful operation.129

In session ticket approach server has a long-term symmetric encryption key called130

the session ticket encryption key (STEK). Instead of storing client’s resumption secret131

in a local database, the server encrypts it with the STEK to create a session ticket and132

gives it to client [2]. If client requests session resumption with the session ticket, server133

can decrypt it to retrieve the resumption secret, thus local management of PSK is not134

necessary. Session ticket approach has the advantage that it does not require server-side135

state, but it reuses a fixed session key multiple times during the lifetime of the session136

ticket. Reuse of fixed session key should be very careful in the point of communications137

security. It is also vulnerable to replay attacks [3] and denial of service (DOS) attack.138

There is a possibility of tracking users [13].139

2.3. Stateless One-time Authenticated Key Establishment Using Paired Token140

In OAuth 2.0 bearer token [4,5] and JSON web token (JWT) [6] server issues static141

bearer token to authenticated client. If a client presents a valid bearer token to the server142

in subsequent requests, server verifies the token, accepts the authenticated state of client143

and provides proper services. In this case the same static token is sent to the server144

multiple times during the lifetime of token and it is considered as a kind of credential.145

So it is subject to eavesdropping and replay attack that the whole web service should be146

protected with secure communication channel such as https [7].147

Paired token (PT) [15,16,19] was originally proposed to solve the static nature148

of bearer token authentication and secure channel requirement in web environment.149

PT is a new secondary credential scheme that provides stateless pre-shared key (PSK)150

more efficiently in a client-server environment. It can be used for time-based one-time151

authenticated key establishment multiple times without requiring secure communication152

channel. Assume that there is an independent authentication system between client153

and server using some primary credentials. The server authenticates the client using a154

primary credential and then issues a paired token (public token and secret token) to the155

authenticated client as a secondary credential. The public token has the role of signed156

identity of the client that represents the authenticated state of the client. A secret token157

is a kind of shared secret between the client and server with a special property such158

that the server can compute secret token any time from a given public token; thus, the159

server does not need to save issued client tokens. Here, we describe the scheme in the160

following two stages.161

2.3.1. Initial Authentication and Issuing Paired Token162

Let’s consider a simplified authentication model between client and server. Client163

is registered to the server and has some primary credential for initial authentication.164

Assume that server has a master secret key K which is used for issuing tokens. It is used165

only inside the server and never exposed outside.166

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

https://doi.org/10.20944/preprints202102.0102.v1

Version February 2, 2021 submitted to Electronics 5 of 13

In initial authentication client logs into the server using primary credential, for167

example, using ID and password. If initial authentication is successful, server computes168

two tokens as follows.169

1. Public token Tp = GJWT(K, In f o) : a normal JSON web token (JWT) on user’s170

authorization information In f o.171

2. Secret token Ts = GJWT(K, Tp) : a recursive JWT on the above public token Tp.172

Here GJWT(K, In f o) is an abstract notation of issuing process of a JWT [4–6,19]. It
represents that server prepares user-specific authorization information In f o and puts it
in the Payload, prepares proper Header, and generates a Signature, a HMAC value of
the Header and Payload using the server’s secret K,

Signature = HMAC(K, Header||Payload).

Then Token = [Header.Payload.Signature] is a valid JWT issued to the user by the server.173

In f o is a JSON object prepared by the server that server can decide which information174

is included in In f o according to its policy. To issue JWT with limited lifetime, In f o can175

have information on issuing time and expiration time. If Tp is used after its lifetime has176

passed, it will be invalidated. Ts is computed from Tp and it will be computed frequently177

in the server in later authentication stages. Therefore no time information is included178

in the computation of Ts to make these repeated computations be easy with no lifetime179

check. < Tp, Ts > is a paired token that Ts is valid only if Tp is valid.180

Server sends < Tp, Ts > to client through a secure communication channel. In181

the issuing stage of PT, secure communication channel is required to send PT to client182

securely. Note that initial authentication requires secure communication channel to send183

the password securely and issuing paired token can use the same secure communication184

channel. As a secure communication channel we can use https, or other custom secure185

channel. Client stores paired token securely in application or key storage. In web security186

environment paired token can be stored in browser storage such as local storage.187

Public token Tp represents a signed identity of the user and will be sent to the server188

to provide identification of client. Note that its validity can be verified only by the server189

who has issued it, since the master secret key K is needed in verification. Secret token Ts190

is a kind of shared secret between client and server, and it will never be sent to server191

directly. Server does not need to save < Tp, Ts > in DB, since Tp will be presented by the192

client and Ts can be computed anytime from Tp. Therefore Ts is an inherently shared193

secret with the server in a stateless way. Maybe server can decide to store Tp for logging194

purpose, but it will not be used in later authentication and key establishment stage.195

2.3.2. One-Time Authenticated Key Establishment Using Paired Token196

If client is equipped with PT as shown above, single message quick one-time197

authenticated key establishment is possible using PT. Now client equipped with <198

Tp, Ts > wants to establish a fresh session key with the server.199

Client gets current time t, computes a time-based one-time authentication value
auth, computes one-time authenticated key k as follows.

auth = HMAC(Ts, t||Tp), (1)

k = HMAC(Ts, t||Tp||“key”). (2)

Here “key” is a pre-agreed label for key generation. Client sends < Tp, t, auth > to the200

server.201

Upon receiving < Tp, t, auth >, server first verifies the validity of auth as follows.202

1. Verifies the validity of Tp and identifies who is requesting authentication.203

2. Gets its own current time and checks that client’s request time t is within allowed204

limit (checking liveness of request to defend against replay attack).205

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

https://doi.org/10.20944/preprints202102.0102.v1

Version February 2, 2021 submitted to Electronics 6 of 13

3. Computes the secret token Ts = GJWT(K, Tp) from Tp and then verifies the validity

auth ?
= HMAC(Ts, t||Tp). (3)

If it is valid, server computes the same one-time authenticated key k in (2) using Ts.206

Here auth is a time-based one-time authentication of client and proves the possession of207

Ts. It is an application of time-based one-time password (TOTP) scheme [14] to paired208

token scenario to prove the possession of Ts without exposing it. Thus the same PT can209

be used multiple times for one-time authenticated key establishment.210

PT is a fully hash-based secondary credential scheme that its use in authentication211

protocol is very efficient. It is specially designed credential that can be used in 1-to-1212

communication in client-server environment. It cannot be used in other communication213

channels with other servers.214

3. Stateless One-Time Authenticated Session Resumption Using Paired Token215

Since PT is a secondary credential scheme that provide stateless PSK in client-server216

environment and it can be used for one-time authenticated key establishment, it is a217

perfect solution for efficient session resumption in TLS. We apply the stateless PSK218

feature of PT to TLS handshake protocol to achieve efficient session resumption. In TLS219

1.3 there are two handshake protocols; full handshake and session resumption. We will220

modify TLS 1.3 protocols in the following ways.221

1. In the full handshake protocol PT is issued to authenticated client in NewSes-222

sionTicket.223

2. In the session resumption protocol session key is established using PT.224

3.1. Full Handshake and Issuing PT225

Basically this stage is the same as the full handshake in TLS 1.3 except that PT226

is issued in NewSessionTicket message. Full handshake contains mandatory server227

authentication using server certificate and optional client authentication using client228

certificate. Key exchange in the first two moves are used to compute fresh shared session229

key between client and server, and it is used to send NewSessionTicket (PT) securely to230

client. Server computes public token and secret token as follows.231

1. Public token Tp = GJWT(K, In f o).232

2. Secret token Ts = GJWT(K, Tp).233

Server encrypts < Tp, Ts > using the shared session key and sends it to client. Then234

client decrypts it to recover < Tp, Ts > and saves it in client system.235

In public token server can include any client-specific information such as IP address,236

OS information, browser information, issuing time, lifetime of the token, etc, according237

to its policy. It is signed by the server with the master secret key K and its validity is238

verifiable only by the server who knows K. Secret token is generated by recursively239

signing the public token with no lifetime information. It can be generated only by the240

server.241

Since the same PT will be used multiple times for session resumption during the242

lifetime of PT, this process of issuing PT is executed very infrequently only in full243

handshake. If client is equipped with a valid PT, session resumption using PT will be244

used more dominantly.245

3.2. Stateless One-Time Authenticated Key Establishment Using Paired Token246

If a client is equipped with PT, secure session key can be established very quickly247

in stateless way using PT. This process is executed in every resumption requests and248

produces different session keys though the same PT is used repeatedly. Here we mainly249

focus on how PSK is computed from the protocol in client and server. Then PSK-based250

real session key establishment and extra services can rely on the underlying TLS 1.3 PSK251

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

https://doi.org/10.20944/preprints202102.0102.v1

Version February 2, 2021 submitted to Electronics 7 of 13

functions. According to the requirement of forward security we consider the following 2252

protocols.253

3.2.1. Model 1: PSK from Authenticated Key Transport254

Client and server already share the same secret token in stateless way, thus they can
establish PSK in any pre-agreed manner. For example, client prepares current time t and
computes

auth = HMAC(Ts, t||Tp), (4)

PSK = HMAC(Ts, t||Tp||“key”). (5)

Client sends < Tp, t, auth > to server.255

Upon receiving < Tp, t, auth >, server verifies the validity of auth in the following256

steps.257

1. Verifies the validity of Tp using K and identifies who is requesting session resump-258

tion.259

2. Gets his own current time and checks that the time difference from client’s request260

time t is within certain allowed limit (checking liveness to defend against replay261

attack).262

3. Computes the secret token Ts = GJWT(K, Tp) from Tp and then verifies the validity

auth ?
= HMAC(Ts, t||Tp). (6)

If all the above verifications are successful, server computes the PSK using the same263

equation 5.264

Here auth is a time-based one-time authentication (proof of knowledge of Ts) of265

client. It can be generated only by the client who knows Ts and its validity can be verified266

only by the server who knows K. Any eavesdropping and replay of the protocol at267

another time will be determined to be invalid. Eavesdropping attacker cannot compute268

PSK, since it does not have Ts.269

Now client and server share the same PSK and it can be used to compute secure270

session key for record protocol using the underlying PSK-mode functions of TLS 1.3.271

Note that real session keys will be distinct depending on client’s request time t. This is a272

real 0-RTT handshake, since client can send encrypted application level data in the first273

request message.274

This is a single message, one-way, deterministic key establishment. It will be very275

useful for lightweight client and intermittent communications such as IoT applications.276

3.2.2. Model 2: PSK from Authenticated Key Establishment and DH277

The above key establishment protocol does not provide forward security. If an278

attacker gets access to Ts in any way, he can compute all the previous PSKs during the279

lifetime of PT. Here we incorporate ephemeral Diffie-Hellman key exchange to achieve280

forward security.281

Client prepares current time t and ephemeral DH key share gx and computes

auth1 = HMAC(Ts, t||Tp||gx). (7)

Client sends < Tp, t, gx, auth1 > to server.282

Upon receiving < Tp, t, gx, auth1 >, server verifies the validity of auth1 in the283

following steps.284

1. Verifies the validity of Tp and identifies who is requesting authentication.285

2. Gets his own current time and checks that the time difference from client’s request286

time t is within certain allowed limit (checking liveness to defend against replay287

attack).288

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

https://doi.org/10.20944/preprints202102.0102.v1

Version February 2, 2021 submitted to Electronics 8 of 13

3. Computes the secret token Ts = GJWT(K, Tp) from Tp and then verifies the validity

auth1 ?
= HMAC(Ts, t||Tp||gx). (8)

If all the above verifications are successful, server prepare its ephemeral DH key
share gy and computes

auth2 = HMAC(Ts, t||Tp||gxy), (9)

PSK = HMAC(Ts, t||Tp||gxy||“key”). (10)

Server sends < Tp, t, gx, gy, auth2 > to client.289

Then client can compute gxy and verify the validity of auth2. If it is valid, client290

computes the same PSK using the same equation (10). Now client and server share the291

same PSK and compute secure session key for record protocol using the underlying292

PSK-mode functions of TLS 1.3. This key establishment protocol provides forward293

security with one round of extra communication.294

If client wants to send encrypted application level data in the first request message,
it can do it by using a temporal PSK′

PSK′ = HMAC(Ts, t||Tp||gx||“key”). (11)

Server can compute the same PSK′ and decrypt it. Thus, it can provide 0-RTT handshake,295

though the first message does not provide forward security.296

3.3. Model 3: Privacy and Untraceability using One-Time Anonymous PT297

In the proposed scheme public token is sent to the server in plain communication298

channel as an identification of client, therefore eavesdropping network attacker can299

identify the client from the communication traffic. If privacy of client is a prime concern,300

server can issue anonymous PT with no client-specific information in public token. If301

server needs to identify the client from the anonymous public token, server can keep302

the record of the relation between client and issued anonymous public token inside the303

server. It will depend on server’s policy.304

If a fixed anonymous PT is used for long period of time, network attacker can305

try to trace the activity of the same client. To provide untraceability, server can renew306

anonymous PT in every connections; i.e., server issues new anonymous PT to the same307

client and it is used only once. Issuing renewed PT to already authenticated client308

through an already established secure channel is not heavy in performance and it can be309

managed in automatic way. Server can trace the identity of client if it keeps the record of310

renewed PTs, but network attacker cannot trace the renewed PTs. Note that anonymous311

PTs issued by the server have no inter-relation. Therefore if one-time anonymous PTs312

are used and previous PTs are discarded, forward security can be achieved very easily.313

3.4. Discussion on Further Extensions314

We consider further extension scenarios according to service requirements.315

Renewal of session key. To improve the security of symmetric key cryptography,316

session key needs to be renewed periodically. In the proposed scheme renewal of session317

key is very easy. Server can request renewal of session key to client, and then client can318

start new key establishment using new current time. It can be executed automatically319

between client and server. Renewal of session key will not be exposed to network320

attackers, since it is executed inside the previously established secure communication321

channel.322

Per-request secure communications. If service is provided in intermittent manner,323

managing a secure session like https can be a burden. For example, normal UDP based324

services such as DNS has intermittent nature. Transactions between IoT devices and325

IoT server are quite intermittent. Current DTLS is a UDP security protocol, but it still326

uses session-based TLS handshake, so it is not best suited in this scenario. If we apply327

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

https://doi.org/10.20944/preprints202102.0102.v1

Version February 2, 2021 submitted to Electronics 9 of 13

the Model 1 key establishment protocol, it is very efficient that we don’t need to keep328

the session information. It is a real per-request secure communication ready for use in329

intermittent connection.330

Delayed full authentication. Assume that client and server quickly resumed a secure331

communication channel using PT, but want to check the authenticity of peers again at332

later time. Then they can execute full authentication again inside the already established333

secure channel. If a party cannot be successful in this delayed full authentication, the334

secure connection is stopped and new full handshake will be requested. Full hand-335

shake is computationally heavy since it requires secure session establishment, but full336

authentication inside a secure communication channel is not heavy.337

Rotation of server’s master secret key K. To improve the security of service, server338

can renew master secret key K periodically. If K was renewed and client has PT issued339

by using old K, then client’s PT is invalid and client will be requested to execute full340

handshake again. If K is renewed while client was communicating with the server in a341

previously established secure session, then server can temporarily use two master secret342

keys, issue new PT using new master secret key, and then guide the client to restart the343

session. All this renewal process can be done automatically inside previously established344

secure communication channel.345

Scalability in distributed multiple server environment. Distributed multiple server346

environment is common in large scale services with huge number of concurrent clients.347

In this case it is a hot issue how to provide TLS secure communication service in scalable348

way. In the proposed scheme scalable TLS service is possible if the master secret key K is349

shared among multiple servers. Since multiple servers are normally managed by the350

same entity, sharing K securely in the pool of TLS servers is a reasonable assumption.351

Backward compatibility of TLS. TLS 1.3 provides session ticket-based session re-352

sumption and the proposed scheme provides PT-based session resumption. These353

two handshakes can be implemented independently and one of them can be selected354

according to choice. So, backward compatibility can be achieved easily.355

Separation of key establishment from full handshake. If PT-based key establishment356

is acceptable due to its efficiency, separation of key establishment function from full357

handshake can be a better choice, though it is a significant change in protocol compared358

with TLS 1.3. In this case the role of full handshake is limited to authenticating peers359

and issuing PT safely to authenticated client. Key establishment function is executed360

in separate protocol using PT. In this scenario full handshake will be executed very361

infrequently. In most lifetime of TLS usage, PT-based stateless key establishment will362

be used dominantly. More in-depth discussion will be required on this matter in the363

research community.364

Integration with application level authentication. TLS is a transport layer security365

protocol and it normally provides communications security which is independent from366

application layer security. In TLS server authentication is mandatory, but client authenti-367

cation is optional. Client authentication using certificate is hard to manage in the real368

world.369

PT is a secondary credential that is issued to client by the server after a primary370

authentication is successful. This authentication scenario is very similar to application371

level authentication. If any proper API can be provided that can connect TLS handshake372

with application level authentication such as ID and password, then TLS handshake can373

be integrated with more explicit application level authentication and client authentication374

can be used more easily.375

4. Analysis376

4.1. Comparison of Features377

We compare the features of the proposed PT-based session resumption with the378

session ticket-based session resumption.379

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

https://doi.org/10.20944/preprints202102.0102.v1

Version February 2, 2021 submitted to Electronics 10 of 13

In the session ticket-based session resumption, the session key itself is a credential380

and the same session key is used again in the resumed session. Thus reuse of the fixed381

session key multiple times in different sessions should be very careful. When client382

requests session resumption by sending session ticket, there is no explicit authentication383

mechanism that server cannot distinguish replay attacks or forged requests. Therefore it384

is subject to replay attack and denial of service (DOS) attack. If the same session key is385

reused multiple times, attackers can trace the activities of clients and forward security386

cannot be achieved [13].387

On the other hand, the proposed PT-based session resumption provides explicit388

identification of client (by verifying Tp), explicit one-time authentication auth (proof of389

knowledge of Ts), and establishment of one-time session key in a single logical step. In390

this case credential is the secret token and session keys are computed from the secret391

token. Every resumed sessions will have distinct session keys because of the time392

information. Thus the same PT can be used for session resumption multiple times393

for longer period of lifetime. Since every session resumption requests contain explicit394

one-time authentications of client, it cannot be reused at later time. Any trial of DOS395

attack with forged request will be detected and stopped in earliest time. If renewal396

issuing of anonymous PT is used like in Model 3, privacy and untraceability of client397

is guaranteed. If anonymous PT is used only once and previous PT is discarded, then398

forward security is achieved easily.399

Both approaches provide 0-RTT secure communication feature, but the proposed PT-400

based session resumption provides 0-RTT with distinct session keys in every connected401

sessions.402

Table 1: Comparison of features; session ticket-based vs. PT-based session resumptions.

Features Session ticket PT-based (Model 3)
Credential session key secret token
Session key fixed one-time

Multiple usage Yes Yes
Authentication No auth one-time auth

Anti-replay No Yes
Anti-DOS No Yes

Anti-tracing No Yes
Forward security No Yes

0-RTT Yes Yes

Table 2: Comparison of features; Model 1 - 3.

Features Model 1 Model 2 Model 3
Forward security No Yes Yes

Anti-tracing No No Yes
Performance High Low Low

Now we compare the features of the proposed 3 models of session resumption.403

Model 1 is the simplest and most efficient key establishment scheme. It cannot404

provide forward security and anti-tracing, but it is a single message one-way key es-405

tablishment started by client. If the server can accept the trustworthiness of client, or406

if the server normally checks the authenticity of client in other ways, then this kind of407

one-way key establishment is very useful. If the communication model is intermittent408

rather than requiring continuous connection, this is best suited secure communication409

model. For example, in IoT applications communications between IoT end devides and410

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

https://doi.org/10.20944/preprints202102.0102.v1

Version February 2, 2021 submitted to Electronics 11 of 13

IoT server is quite intermittent that keeping session is heavy. In this case per-request411

secure communication is possible using Model 1 session resumption.412

Model 2 provides forward security by using extra exchange of DH key shares. It413

requires computation of modular exponentiations and 1 additional round of communi-414

cation. If the communication model requires stable session connection for longer time415

and forward security is a prime concern, this is a reasonable session resumption model.416

Since the same PT is used multiple times, it cannot provide anti-tracing.417

Model 3 provides both forward security and anti-tracing by using one-time anony-418

mous PT, i.e. anonymous PT is used only once and renewed in every resumed sessions.419

PT is issued and managed in server and client automatically by the software and this420

renewal process is executed safely inside the already established secure session. Thus421

this kind of renewal of PT is not heavy in performance. If the server needs to trace the422

client from the anonymous PTs, it has to keep the records of renewal history, which will423

require stateful operation in server side.424

4.2. Security Analysis425

Unforgeability. Public token is a publishable information and it is sent to server over426

plain communication channel, while secret token is assumed to be kept secret in client.427

Server can compute secret token anytime from given public token using the master secret428

key K. Network attackers can try to collect client’s public token and protocol messages,429

and then try to compute the secret token or even server’s secret key K. Attackers can try430

to forge another session resumption request without having secret token. The security of431

this kind of attacks will depend on the security of the underlying HMAC function. Note432

that JWT contains a HMAC value signed by server. A successful forgery of JWT will be433

reduced to a successful forgery of the underlying HMAC without having master secret434

key.435

Resistance to replay attack. Any kind of eavesdropping and replaying attack will be436

difficult since time-based one-time authentication auth is sent to the server in the first437

move of request, and the server will check its validity. If auth is not valid, server will438

stop the session resumption protocol and will require full handshake. Simple replay439

attack will not work at another time. Network attackers can try to concurrently replay440

other client’s session resumption request, but they do not have any advantage since they441

cannot compute the real session key without the secret token.442

Resistance to DOS attack. Attackers can try to attack the availability of service by443

sending incorrect requests to the server. But the server can detect this kind of attacks in444

the earliest time. Client’s request message in the first move message contains time-based445

one-time authentication auth and the verification process is very efficient with just a few446

hash computations. Server can detect and stop invalid session resumption requests from447

attackers very early and the attackers will be requested to start from the full handshake448

again.449

Resistance to MITM attack. Man-in-the-middle (MITM) attack is an issue related with450

the full authentication. Client has to be able to verify the mandatory server authentication451

and the server has to issue PT only to authenticated client. Once client is equipped452

with PT correctly issued by the server, client and server have a special 1-to-1 secure453

communication channel. If server issued PTs correctly with different In f o at different454

time, every clients will have different PTs. Any attacker in the middle cannot intrude455

into the secure communication channel established using PT between client and server.456

Resistance to session hijacking attack. Any trial of simple session hijacking will not457

be successful, since attacker cannot continue the protocol without knowing the secret458

token and established session key is never exposed over the communication network.459

Secrecy of messages. In PT-based session resumption protocol, client sends <460

Tp, t, auth > to server in plaintext to start the session resumption. This is the only461

message exposed to network attackers. All other messages can be sent in encrypted form462

using the 0-RTT feature of the proposed protocol.463

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

https://doi.org/10.20944/preprints202102.0102.v1

Version February 2, 2021 submitted to Electronics 12 of 13

Forward security. Since PT is a secondary credential that is intended to be used464

multiple times during its lifetime, providing forward security is important. We have465

shown that Model 2 and Model 3 provide forward security with different approaches.466

Privacy and untraceability. We have shown that Model 3 provides privacy and467

untraceability by using one-time anonymous PT and renewal of anonymous PT.468

Systems security. As described above network attackers who do not have the secret469

token cannot do many things. Considering the fact that the same PT is used multiple470

times for longer period of lifetime, attackers will be more interested in system attacks471

that can get PT itself; such as OS hacking, malicious software, hacking browser, hacking472

application, hacking storage systems for tokens, etc.473

If attacker is successful in hacking the system and get the PT itself, then every474

attacks are possible, such as sniffing or spoofing the attacked clients. Since secret token475

is a secondary credential that has to be stored and used in the client system, its security476

will highly depend on the system security, key storage security, and application security.477

Therefore, client system has to be kept secure using the best practice in the point of478

system security. This is a common system security argument in which credential is479

stored and used in the system itself.480

4.3. Performance Analysis481

Session ticket-based session resumption and Model 1-3 session resumption schemes482

have different features as shown in previous section that direct comparison of perfor-483

mance is difficult. Session ticket-based session resumption has limitations since the same484

session key is reused multiple times in different sessions. It can be used together with485

DH key exchange, which will result different session keys in different sessions.486

The proposed Model 1-3 schemes provide session resumption service in stateless487

way and the same PT can be used multiple times for session resumption during the488

lifetime of PT. Because of the time-based one-time authenticated key establishment each489

session will have different session keys. Model 1-3 have different features and different490

performances that proper choice is necessary.491

In large scale distributed server environment, scalability is a prime issue. In the492

proposed PT-based session resumption protocol scalability can be achieved very easily if493

the master secret key K is shared among the multiple servers.494

5. Conclusion495

Paired token is a useful secondary credential scheme that can provide stateless PSK496

between client and server. It looks like a useful cryptographic ticket that is issued by a497

server to an authenticated VIP client. In this paper we modified TLS 1.3 protocol such498

that server issues PT to authenticated client in full handshake protocol, and then stateless499

time-based one-time authenticated session resumption using PT is used dominantly.500

It can replace the traditional session ticket-based session resumption. It can provide501

forward security and anti-tracing with enhanced performance and scalability. It is502

conceptually simple since the same PT can be used multiple times in safe way to establish503

secure sessions that are distinct depending on time.504

We think that the proposed session resumption schemes can be used in TLS 1.3505

to improve security and performance. More in-depth discussions on various practical506

matters are required in the TLS research community.507

Funding: This research received no external funding.508

Acknowledgments: This work was conducted while the author visited the University of Alabama509

at Birmingham as a sabbatical research fellow with the support of Joongbu University in 2020.510

Special thanks to professor Yulian Zheng for the favor of invitation and many helpful discussions511

on this work.512

Conflicts of Interest: The authors declare no conflict of interest.513

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

https://doi.org/10.20944/preprints202102.0102.v1

Version February 2, 2021 submitted to Electronics 13 of 13

References
1. Eric Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3, RFC8446, 2018. Available online https://tools.ietf.org/html/rfc8446
2. Joseph Salowey, Hao Zhou, Pasi Eronen, Hannes Tschofenig, Transport Layer Security (TLS) Session Resumption without

Server-Side State, RFC5077, 2008. Available online https://tools.ietf.org/html/rfc5077
3. Nimrod Aviram, Kai Gellert, and Tibor Jager, Session Resumption Protocols and Efficient Forward Security for TLS 1.3 0-RTT,

Eurocrypt 2019, Pages 117-150, Cryptology ePrint Archive: Report 2019/228, 2019. https://eprint.iacr.org/2019/228
4. Dick Hardt, The OAuth 2.0 authorization framework, RFC6749, 2012. Available online https://tools.ietf.org/html/rfc6749
5. Michael B. Jones and Dick Hardt, The OAuth 2.0 authorization framework: bearer token usage, RFC6750, 2012. Available online

https://tools.ietf.org/html/rfc6750
6. Michael B. Jones, John Bradley, and Nat Sakimura, JSON web token (JWT), RFC7519, 2015. Available online https://tools.ietf.org/html/rfc7519
7. Eric Rescorla, HTTP over TLS, RFC2818, 2000. Available online https://tools.ietf.org/html/rfc2818
8. A. Langley, W.T. Chang, QUIC crypto, 2014. Available online https://docs.google.com/
9. J. Iyengar and M. Thomson, QUIC: A UDP-based multiplexed and secure transport, June 2020. Available online

https://tools.ietf.org/html/draft-ietf-quic-transport-29.
10. M. Thomson, S. Turner, Using TLS to Secure QUIC draft-ietf-quic-tls-34, Available online https://tools.ietf.org/html/draft-ietf-

quic-tls-34.
11. Robert Lychev, Samuel Jero, Alexandra Boldyreva, Cristina Nita-Rotaru, How Secure and Quick is QUIC? Provable Security and

Performance Analyses, Cryptology ePrint Archive: Report 2015/582, 2015. Available online https://eprint.iacr.org/2015/582
12. Shan Chen, Samuel Jero, Matthew Jagielski, Alexandra Boldyreva, and Cristina Nita-Rotaru, Secure Communication Channel

Establishment: TLS 1.3 (over TCP Fast Open) vs. QUIC, ESORICS 2019, Cryptology ePrint Archive: Report 2019/433, 2019.
https://eprint.iacr.org/2019/433

13. E. Sy, C. Burkert, H. Federrath, and M. Fischer, Tracking Users across the Web via TLS Session Resumption, ACSAC ’18, December
3-7, 2018, San Juan, PR, USA.

14. D. M’Raihi, S. Machani, M. Pei, J. Rydell, TOTP: Time-Based One-Time Password Algorithm, RFC6238, 2011. Available online
https://tools.ietf.org/html/rfc6238

15. Byoungcheon Lee, Strengthening of token authentication using time-based randomization, Journal of Security Engineering, vol.
14, no. 2, 2017, pp. 103-114.

16. Byoungcheon Lee, Stateless Randomized Token Authentication for Performance Improvement of OAuth 2.0 MAC Token
Authentication, Journal of The Korea Institute of Information Security & Cryptology, VOL.28, NO.6, 2018, pp. 1343-1454.

17. Byoungcheon Lee, Efficient Wi-Fi Security Protocol Using Dual Tokens, Journal of The Korea Institute of Information Security &
Cryptology, Vol. 29, No. 2, 2019, pp. 417-429.

18. Lee, B. Stateless Re-Association in WPA3 Using Paired Token. Electronics 2021, 10, 215. https://doi.org/10.3390/electronics10020215
19. Lee, B. Paired Token: A New Secondary Credential Providing Stateless Pre-Shared Key. Int. J. Inf. Secur. 2020. submitted.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 3 February 2021 doi:10.20944/preprints202102.0102.v1

https://doi.org/10.20944/preprints202102.0102.v1

	Introduction
	 Related Works
	 TLS 1.3
	 Session Resumption
	 Stateless One-time Authenticated Key Establishment Using Paired Token
	 Initial Authentication and Issuing Paired Token
	 One-Time Authenticated Key Establishment Using Paired Token

	 Stateless One-Time Authenticated Session Resumption Using Paired Token
	 Full Handshake and Issuing PT
	 Stateless One-Time Authenticated Key Establishment Using Paired Token
	 Model 1: PSK from Authenticated Key Transport
	 Model 2: PSK from Authenticated Key Establishment and DH

	 Model 3: Privacy and Untraceability using One-Time Anonymous PT
	 Discussion on Further Extensions

	 Analysis
	 Comparison of Features
	 Security Analysis
	 Performance Analysis

	 Conclusion
	References

