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Abstract. A mix-network accepts a set of ciphertexts and outputs the corresponding plaintexts in a
random order. It is an important tool in schemes requiring anonymity of messages, such as in secure
e-voting and e-auction schemes. A mix-network is comprised of shuffling and decryption operations. A
robust mix-network must provide proofs that it shuffles and decrypts its input ciphertexts and out-
puts their corresponding plaintexts correctly. Verifying such proofs is often a bottleneck affecting the
performance of the mix-network. We propose a secure and efficient mix-network employing extended
binary mixing gates (EBMGs) to shuffle the ciphertexts and prove the correctness of the shuffling.
Batching techniques are used in the EBMGs, such that the mix-network is very efficient. The proposed
mix-network offers sufficient anonymity and high performance level compared to other mix-network
schemes.
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1 Introduction

Applications such as secure e-voting and e-auction require that votes and bids are to be anonymous.
Voter-vote relationships must be kept private in secret-ballot voting, and only the winning bidder
is to be identified in sealed-bid auction schemes. This requirement is called anonymity, which is
essential to protect the privacy of the voters or bidders. To ensure anonymity, many of the schemes
employ anonymous channels in communicating messages.

An anonymous channel is a mechanism to achieve anonymity, such that outputs of the channel
cannot be linked to their original sender. This is normally implemented using a mix-network. A
mix-network shuffles a number of ciphertext inputs (each from one user) and provides the same
number of plaintext outputs, such that:

1. outputs of the mix-network is a random permutation of the plaintexts in the input ciphertexts,

2. the random permutation is kept secret, such that input and output relationships are publicly
unknown.

These two main properties of a mix-network are known as correctness and privacy respectively.

Two other important properties are robustness and public verifiability. A mix-network is robust
if it manages to operate properly under anomalous conditions, such as failure of one or more of its
mixing nodes. A mix-network is publicly verifiable if its correctness can be publicly verified.

As input and output relationships have to be kept secret by the mix-network, proving correctness
of the mixing operation is often made complicated. Currently, there is no acceptably efficient method
to check this. Hence, mix-network schemes to date do not accommodate real-world applications
requiring a large number of messages to be shuffled, e.g. in a national election. Current research in
this area aims at producing a secure and practical scheme for implementation in the real-world.



One approach to design a correct and private mix-network is to use the combination of multiple
small-scale mixings (mixing a small number of inputs to the same number of outputs) to implement
a large-scale mixings (mixing a large number of inputs to the same number of outputs) [1, 2, 24].
In Abe’s work [1, 2], binary mixing gates (mixing two inputs to two outputs) are used, while larger
mixing gates (the number of mixed inputs in each gate is larger than two, but much smaller
than the number of mixed inputs in the whole mix-network) are employed in the scheme by Peng et

al. [24]. Each of these two solutions has its own advantages and disadvantages. Our proposed scheme
combines the advantages of these two solutions and avoids their disadvantages by using a new
technique called extended binary mixing gate (EBMG). With the help of batch cryptology, mixing
based on EBMGs achieves better trade-off between security and efficiency than [1, 2, 24]. The
design is based on a re-encryption chain mix-network employing individual mix server verification.

In the new mix-network, a batch re-encryption technique is employed to improve the efficiency
of re-encryption. The permutation is gate-based and simplified, such that correctness verification
of the shuffling can be batched.

The remainder of the paper is organised as follows: Section 2 provides a summary of previous
work in the mix-network research area. Section 3 describes batch re-encryption and batch ver-
ification of equality of logarithms of the same base. These provide two essential foundations to
the proposed scheme. Section 4 details an EBMG employing ElGamal cryptosystem, as a building
block to the proposed mix-network. Section 5 describes the protocol of the mix-network made up
of EBMGs. The core mix-network protocol and its privacy analysis are detailed, and an alternative
protocol is provided. Section 6 offers security and efficiency analysis of the proposed mix-network.
Section 7 is a conclusion.

2 Related Work

Mix-networks are frequently applied to implement anonymous channels, so is needed in any ap-
plication with a requirement of anonymity. It is well known that mix-networks can be employed
to achieve anonymity in email systems and e-voting. Recently Peng et al [23] define relative bid
privacy in e-auction and design a mix network to implement anonymous bid submission, and thus
relative bid privacy.

In this section, we briefly review related work in the mix-network research area. Background on
the importance of re-encryption chain mix-network is discussed, and a classification of mix-network
schemes to date is provided.

2.1 Re-encryption Chain Mix-Network

A mix-network is normally composed of a number of mix servers (mixers) working sequentially.
Each mixer obtains its inputs from the previous server, processes them, randomly permutes their
ordering, and forwards the outputs to the next server. This is such that the relationships between the
original inputs and the final outputs are kept secret if at least one server conceals his permutation.

According to the processing performed by the servers, mix-networks can be classified into two
types: decryption chain and re-encryption chain mix-networks. In the former type, each input is
sequentially encrypted by the user for the servers to decrypt. Consequently, failure of any server
means that the input messages cannot be recovered if each server holds its own private key secret (as
required to achieve strong privacy). Therefore, decryption chain mix-networks inherently lack ro-
bustness. Thus, we only consider re-encryption chain mix-networks employing threshold decryption
in this paper.
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Fig. 1. Basic structure for re-encryption mix-networks introduced by Ogata et al. [18].

Ogata et al. [18] introduced a basic structure for re-encryption chain mix-networks illustrated in
Figure 1. Their scheme was further developed in many later papers. Suppose an ElGamal encryption
with distributed decryption is employed as in Pedersen [22]. Decryption authorities employ a dis-
tributed key generation scheme [10, 21, 12] to generate a private key x, which is shared by them. The
public key is (g, y = gx). For i = 1, . . . , n and j = 1, . . . ,m, m servers SVj form a mix-network to
shuffle n encrypted inputs ci. Inputs to SVj are cj−1,i, while ci = c0,i. On server SVj , input cj−1,i =
(aj−i,i, bj−1,i) is re-encrypted and permuted to cj,πj(i) = (aj,πj(i), bj,πj(i)) = (grj,iaj−i,i, y

rj,ibj−1,i),
where the value of rj,i is randomly chosen, and πj is a secret random permutation of [1, n]. The
outputs of SVj are cj,i, while the final outputs c′i = cm,i, where i = 1, . . . , n. The shuffling from n
inputs to n outputs in every server is denoted as PN(n), in which the correctness must be verified.
Finally, a quorum of the decryption authorities (e.g. the mixers themselves) cooperate to decrypt
c′i, where i = 1, . . . , n.

2.2 Verification of Correctness of the Mixing Operation

Many of the early mix-network schemes offer security and robustness in exchange for efficiency.
Verification of correctness of mixing and correctness of decryption operations are often time con-
suming. Some of the latest schemes improve on the efficiency by sacrificing verification of correctness



of mixing and decryption operations. According to the different correctness verification mechanisms,
mix-networks can be classified into three categories:

1. No verification: In this category, correctness is not verified and the mixers are trusted to
perform the shuffling correctly. An example of this category is the scheme by Ohkubo and
Abe [19]. Strong trust is necessary in such mix-networks.

2. Global mix verification: Mix-networks in this category do not provide a verification of correct
shuffling by each mixer separately. Instead, correctness of the shuffling by the whole mix-network
is verified after the final plaintext outputs are produced. Schemes in this category include [6,
20, 26, 13]. Drawbacks in this category include:
(a) A cheating mixer cannot be identified instantly.
(b) If an incorrect shuffling is found, a mix-network in the third category must be employed to

perform re-shuffling.
(c) Some outputs may be revealed in plaintext even when the shuffling is incorrect and a re-

shuffling is needed.
3. Individual mixer verification: In this category [25, 15, 1, 2, 11, 18, 16, 4, 17, 14, 24], each mixer

first verifies the correctness of the previous mixer’s shuffling. Then, he shuffles his inputs, proves
the correctness of his own shuffling, and forwards the outputs to the next mixer. Although
schemes in the first two categories are more efficient, schemes in this category are still very
useful as;
(a) they overcome the shortcomings of the first two categories.
(b) they form a necessary sub-function (to handle anomalous situations when cheating in the

shuffling is found) in the second category.
However, there exist various problems in this category. For example: the scheme by Juels and
Jakobsson [15] is not publicly verifiable, some schemes [16, 4] do not provide sufficient correctness
and privacy guarantee for many applications, and other schemes [1, 2, 18, 25] are inefficient.
Three recently proposed schemes [11, 17, 14] offer great improvement in this category. However,
these three schemes are still not optimally efficient for large-scale applications (e.g. national
election) as their computational cost is linear to the number of inputs.

In the third category, a naive method to verify correctness of shuffling by SVj is to test the
following condition:

(logg(aj,πj,1(i)/aj−1,i) = logy(bj,πj,1(i)/bj−1,i)), for i = 1, . . . , n.

∨(logg(aj,πj,2(i)/aj−1,i) = logy(bj,πj,2(i)/bj−1,i)), for i = 1, . . . , n.

... (1)

∨(logg(aj,πj,n!(i)/aj−1,i) = logy(bj,πj,n!(i)/bj−1,i)), for i = 1, . . . , n.

where πj,l for l = 1, 2 . . . , n! represents all n! possible permutations in the choice of πj. This naive
proof is a proof of n-out-of-n × n! equality of discrete logarithms based on the proof of equality of
logarithms and the proof of partial knowledge by Cramer et al. [8]. This proof is honest-verifier-
zero-knowledge and guarantees that the applied permutation is one of the n! possible permutation,
thus it guarantees correctness of the mix-network without compromising privacy. However, this test
is too inefficient because the computational cost for both the prover and verifier on every mixer is
O(n · n!) exponentiations.

An essential efficiency improvement over the naive verification was proposed in [1, 2, 24]. In these
three papers, combination of multiple small-scale mixings is used to implement a large-scale mixings.
In Abe’s work [1, 2], an n-input-to-n-output mixing (denoted as PN(n) in [1]) is divided into a



number of 2-input-to-2-output mixing (namely binary gate, denoted as PN(2) in [1]). Suppose two
encrypted inputs c1 = (a1, b1) c2 = (a2, b2) are encrypted and shuffled to two outputs c′1 = (a′1, b

′

1)
c′2 = (a′2, b

′

2). Verification of validity of the gate is to test the condition:

((logg(a
′

1/a1) = logy(b
′

1/b1)) ∧ (logg(a
′

2/a2) = logy(b
′

2/b2)))

∨((logg(a
′

2/a1) = logy(b
′

2/b1)) ∧ (logg(a
′

1/a2) = logy(b
′

1/b2))) (2)

This proof is a proof of 2-out-of-4 equality of discrete logarithms based on the proof of equality
of logarithms and the proof of partial knowledge by Cramer et al. [8]. Its principle is the same
as that of Proof (1), namely the applied permutation (either n-to-n or 2-to-2) must be proved
to be one of the possible permutations. This type of proof is called permutation-based proof. As
permutation-based proof in a binary gate (Proof (2)) is much more efficient than permutation-
based proof in a large mixing (Proof (1)), Abe’s mix-network is more efficient than a mix-network
with the naive verification even though there are many gates needed in his scheme. The cost of
Abe’s mix-network is O(n log2 n) exponentiations while a mix-network with the naive verification
is O(n × n!) exponentiations.

However, Abe’s schemes are still not efficient enough for many applications as O(n log2 n) (a
large number) binary gates are needed. So, Peng et al. [24] proposed an improved shuffling technique
to further improve efficiency. Larger mixing gates (the number of mixed inputs in each gate is
larger than two, but much smaller than the number of mixed inputs in the whole mix-network)
are employed in [24]1 and the number of mix gates is greatly reduced. In each gate (group) mixing
k inputs (k > 2), validity of the mixing must be proved and verified. If permutation-based proof
is used, each gates requires k × k! exponentiations, which is inefficient as k is larger than 2 (e.g.
k = 20). So permutation-based proof is not employed in [24]. Instead, a server mixing c1, c2, . . . , ck

to c′1, c
′

2, . . . , c
′

k proves the following condition:

((logg(a
′

1/a1) = logy(b
′

1/b1)) ∨ (logg(a
′

2/a1) = logy(b
′

2/b1))∨ . . . ∨(logg(a
′

k/a1) = logy(b
′

k/b1)))

∧((logg(a
′

1/a2) = logy(b
′

1/b2)) ∨ (logg(a
′

2/a2) = logy(b
′

2/b2))∨ . . . ∨(logg(a
′

k/a2) = logy(b
′

k/b2)))

... (3)

∧((logg(a
′

1/ak) = logy(b
′

1/bk)) ∨ (logg(a
′

2/ak) = logy(b
′

2/bk))∨ . . . ∨(logg(a
′

k/ak) = logy(b
′

k/bk)))

This type of proof is called input-based proof, which guarantees that each input is correctly shuffled
to an output. Input-based proof is much more efficient than permutation-based proof and Proof (3)
is only of O(k2) exponentiations. However, input-based proof cannot provide as strong a guarantee
of correct mixing as permutation-based proof. It is explained by Peng et al. [24] that when two
users with inputs containing the same message in the same gate (group) conspire with the first
mixer, they can perform an attack to compromise correctness of the mixing.

In summary, each of the two gate-based solutions has its advantages and disadvantages. Abe’s
mix-network applies binary gates and permutation-based proof in each gate, so that correctness
and high efficiency can be achieved in every gate. Its drawback is that too many gates are needed.
In the mix-network by Peng et al. [24], fewer gates are needed, but high efficiency in each gate is
obtained at the cost of weakened correctness. In this paper, the above two merits (from Abe and
Peng et al.) are combined and their drawbacks are addressed to produce a better mix-network.

1 A mixing gate is called a group in [24]. For example, in a voting involving 1000 voters, 100 groups of size 10 are
employed to implement a mixing of 1000 votes.



3 Batch Cryptology

This section discusses batching techniques of re-encryption and verifying proof of equality of discrete
logarithms of the same base. These techniques are employed in the proposed mix-network to improve
the performance of re-encryption, and proving and verifying correctness of the mixing operation.

3.1 Batch Re-encryption in A Shuffling

In re-encryption chain mix-networks, re-encryption and permutation are performed on every server.
The computational cost of a shuffling of n ciphertexts on a server is O(n). In this section, the n
instances of re-encryption is batched, such that the computational cost on a mixer is reduced to
O(log2 n).

Suppose an encryption algorithm E() is:

– semantically secure, in which a message m is encrypted to c = E(m, r), where r is a random
integer;

– homomorphic, and there is an identity message I such that for any message D(E(m)E(I)) = m
(e.g. I is 1 in ElGamal encryption or 0 in Paillier encryption).

Ciphertexts c1, c2, . . . , cn encrypted with E() have to be shuffled. For simplicity, we assume that
n = 2s (s indicates the bit length of n). The batch re-encryption and permutation of n inputs in a
shuffling (of a mix network) is as follows, where Bk(i) denotes the kth bit of integer i.

1. The server randomly selects 2s secret integers rk,j, for k = 1, 2, . . . , s and j = 0, 1.
2. The server performs 2s different probabilistic encryptions Ri = E(I,

∏s
k=1 rk,Bk(i−1)) for i =

1, 2, . . . , n.
3. The server calculates c′i = cπ(i)Rφ(i), where π() and φ() are random permutations of {1, 2, . . . , n}.

As only 2 log2 n random factors rk,j, for k = 1, 2, . . . , s and j = 0, 1 are used in the re-
encryption of n inputs, some special relations exist between a certain subset of inputs and the

corresponding outputs. For example, when n = 8, R(1)R(8) = R(2)R(7), thus
c′
φ(1)−1

c
π(φ(1)−1)

c′
φ(8)−1

c
π(φ(8)−1)

=

c′
φ(2)−1

c
π(φ(2)−1)

c′
φ(7)−1

c
π(φ(7)−1)

. Knowledge of these relations can be exploited by an attacker to compromise

privacy. The attack requires a brute-force test of every possible permutation until a special relation
is found. However, as two unknown random permutations π() and φ() are involved in the shuffling,
the cost of the attack is O((n!)2) exponentiations. Such attacks are not practical when n is large,
e.g: n = 1000.

This technique of batch re-encryption can be applied to any re-encryption chain mix-network.
It does not complicate validity verification of correct shuffling operation as the original verification
function can still be used after batch re-encryption is employed.

3.2 Batch Verification for Equality of Logarithms of The Same Base

We describe a batch technique to batch both proof and verification of equality of logarithms of
the same base. This technique is essential in batch verifying correctness of ElGamal re-encryption,
providing a foundation for Section 4.

G is the subgroup of Z
∗

p with order q, where p − 1 = 2q, and p, q are large primes. Let g and
h be generators of G. For i = 1, . . . , n, and yi, zi ∈ Z

∗

p, we need to prove and verify logg yi =
logh zi. Naively, the n equations can be proved and verified separately using Chaum-Pedersen’s



zero knowledge proof of equality of discrete logarithms [7]. Using the naive verification method, the
computational cost for the prover is n(2ExpCost(〈q〉) + 1) multiplications, and for the verifier is
n(2ExpCost 2(〈q〉)) multiplications in Z

∗

p, where 〈q〉 is the bit length of q and ExpCost n(L) denotes
the time to compute n exponentiations with an L-bit exponent as in [3].

Based on the batch technique by Bellare et al. [3] and Boyd and Pavlovski [5], Theorem 1
illustrates that these n instances of proofs can be batched, such that computational cost for the
prover and verifier can be greatly improved.

Definition 1. | | is the absolute-value function from Z ∗

p to G defined by:

|σ| =

{

σ if σ ∈ G
gq
0σ if σ ∈ Z∗

p \ G

Theorem 1 ([24]). Suppose yi ∈ Z∗

p and zi ∈ Z∗

p for i = 1, 2, . . . , n. Let L be a security parameter

and ti satisfying ti < 2L < q for i = 1, 2, . . . , n be random values. If there exists v, such that

1 ≤ v ≤ n and logg |yv| 6= logh |zv|, then logg |
∏n

i=1 yti
i | 6= logh |

∏n
i=1 zti

i | with a probability no less

than 1 − 2−L.

According to Theorem 1, for i = 1, . . . , n, verification of logg |yi| = logh |zi| can be batched

as logg |
∏n

i=1 yti
i | = logh |

∏n
i=1 zti

i |. Using this batching technique, the computational cost for the
prover is 2ExpCost(〈q〉)+n+1 multiplications, and for the verifier is 4ExpCost (〈q〉)+2ExpCost n(L)+
2 multiplications. The probability that logg |

∏n
i=1 yti

i | = logh |
∏n

i=1 zti
i | is correct while logg |yi| 6=

logh |zi| is no more than 2−L.

4 Extended Binary Mixing Gate

Using the batch re-encryption technique in Section 3.1 and the batching theorem from Section 3.2,
we detail an Extended Binary Mixing Gate (EBMG) using ElGamal re-encryption in this section.
The proposed mix-network is comprised of EBMGs and the mix-network protocol is described in
Section 5.

A normal binary mixing gate (as in Abe’s scheme [1]) mixes two inputs to two outputs by
re-encrypting the inputs and randomly permutes the ordering of its output. The mixing is required
to be:

– correct: the plaintexts of the outputs are permutation of the plaintexts of the inputs; and
– private: the permutation must be kept secret.

An EBMG shuffles 2k inputs c1, c2, . . . , c2k, to 2k outputs c′1, c
′

2, . . . , c
′

2k by re-encrypting the
inputs and partially permuting them. Illustrated in Figure 2, the mixing by an EBMG must be:

– correct: for i = 1, . . . , 2k, and a decryption function D, the mixing is correct if D(ci) = D(c′i)
or D(ci) = D(c′i+k mod 2k); and

– private: for i = 1, . . . , 2k, whether D(ci) = D(c′i) or D(ci) = D(c′i+k mod 2k) is not revealed.

Either ElGamal or Paillier cryptosystem may be employed to encrypt and re-encrypt the input
messages, and decrypt the output messages in a threshold manner. We use ElGamal cryptosystem
as an example and detail the EBMG protocol accordingly below.

ElGamal cryptosystem is employed with the public key of (p, g, y) and input messages ci =
(ai, bi), where i = 1, . . . , 2k, and 2k is the number of input messages. The mixing are shuffled as
follows.
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Fig. 2. Inputs to outputs permutation in an EBMG.

1. Randomly select a bit d as a switching variable (Figure 2).
2. For i = 1, . . . , 2k, output c′j = (a′j, b

′

j) = (aig
ri mod p, biy

ri mod p), where j = i + kd mod 2k.
3. Prove correctness of the mixing operation by giving the following permutation-based proof:

(logg

∣

∣

∣

∣

a′i
ai

mod p

∣

∣

∣

∣

= logy

∣

∣

∣

∣

b′i
bi

mod p

∣

∣

∣

∣

) ∨ (logg

∣

∣

∣

∣

a′i+k mod 2k

ai
mod p
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∣

∣

= logy

∣

∣

∣

∣

b′i+k mod 2k

bi
mod p

∣

∣

∣

∣

)

for i = 1, . . . , 2k (4)

The computational cost for proving Equation (4) is 6k full-length exponentiations, and the
corresponding verification costs 8k full-length exponentiations. When k is large, the computational
cost increases accordingly.

Theorem 1 (Section 3.2) is applied to batch verify the condition in (4) as:

(logg

∣

∣

∣

∣

∣

2k
∏

i=1

(

a′i
ai

)ti

mod p

∣

∣

∣

∣

∣

= logy

∣

∣

∣

∣

∣

2k
∏

i=1

(

b′i
bi

)ti

mod p

∣

∣

∣

∣

∣

) ∨ (5)

(logg

∣

∣

∣

∣

∣

2k
∏

i=1

(

a′i+k mod 2k

ai

)ti

mod p

∣

∣

∣

∣

∣

= logy

∣

∣

∣

∣

∣

2k
∏

i=1

(

b′i+k mod 2k

bi

)ti

mod p

∣

∣

∣

∣

∣

)

Using the batch technique, computational cost for proving Equation (5) is 6 full-length exponenti-
ations, and the corresponding verification costs 8 full-length exponentiations. We ignore exponen-
tiation cost using an L-bit exponents (e.g. 〈L〉 = 20 bits) since the computational cost is much less
compared to full-length exponentiations (e.g. 〈q〉 = 1024 bits) and is typically smaller than 5% of
the entire cost.

5 The Mix-Network Protocol

Our proposed scheme combines the advantages of the two mix-networks in [1, 2] and [24] respec-
tively and avoids their disadvantages by using a new technique called EBMG (see Section 4). An
EBMG can mix more than two inputs, such that not many gates are necessary. The number of
EBMGs needed in our mix-network is n, which is much fewer than the number of gates in [1, 2].
In each EBMG, although more than two inputs are mixed, only two permutations are possible.
So permutation-based proof of correctness of mixing can be applied to achieve strong correctness.
Namely, permutation-based proof, a merit of [1, 2] and simple structure, a merit of [24] are com-
bined. As a result, strong correctness can be achieved efficiently. Although the number of possible
permutation in our mix-network is reduced, each of its inputs is equally likely to be shuffled to
any of its outputs. So the privacy of any single input (the desired property of privacy in many
applications) is still strong in the new mix-network.



The new mix-network consists of a number of mixers, each in charge of a level of EBMGs. For
simplicity, we suppose the number of inputs to the mix-network n is a power of 2.

5.1 The Core of The Mix-Network

There are a total of m = log2 n levels, where each mixer is responsible for one level. In the j th level,
there are 2−jn EBMGs, where j = 1, . . . ,m. The number of EBMGs required in the mix-network
core is n− 1. This is illustrated in Figure 3. As the EBMGs can employ either ElGamal (Section 4)
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Fig. 3. Core EBMG structure in the proposed mix-network.

or Paillier re-encryption, the proposed mix-network can either use threshold version of ElGamal [22]
or Paillier [9] cryptosystem. Batch re-encryption technique in Section 3.1 is applied at each mixers
(levels in Figure 3), and batch verification technique in Section 3.2 is applied at each EBMG in the
core mix-network. The core mix-network protocol is detailed as follows:

1. The first level
The inputs c0,1, . . . , c0,n are batch re-encrypted as in Section 3.1. Then they are divided into
n
2 pairs in the first mixer (first level of EBMGs; refer to SV1 in Figure 3). For i = 1, . . . , n

2 ,
every two successive inputs of c0,2i−1 and c0,2i are shuffled to c1,2i−1 and c1,2i by an EBMG.
The shuffled outputs c1,1, . . . , c1,n of the first mixer SV1 are then sent to the second level SV2

to be its inputs.
2. The lth level

Inputs cl−1,1, . . . , cl−1,n. For i = 1, . . . , n
2l are batch re-encrypted as in Section 3.1. Then every 2l

successive inputs cl−1,2l(i−1)+1, cl−1,2l(i−1)+2, . . . , cl−1.2li are mixed to cl,2l(i−1)+1, cl,2l(i−1)+2, . . . , cl.2li

by one EBMG. There are altogether n
2l EBMGs in level l. The outputs cl,2l(i−1)+1, cl,2l(i−1)+2, . . . , cl.2li

of this lth level are forwarded as inputs to be shuffled in the l + 1th level.
3. Each output of the last level of mixing is verified to be in G. Any output not in G is changed

to its absolute value (see Definition 1).



4. The final output ciphertexts are decrypted in a threshold manner by some decryption authorities
(e.g. the mixers themselves).

5.2 Ciphertexts Distances

Illustrated in Figure 2, the value of the switching variable d determines the output positions of
the ciphertexts processed in an EBMG. Structured as in Figure 3, the final output positions of
the ciphertexts shuffled by the core mix-network are determined by the values of the switching
variables, each in the EBMGs processing the ciphertexts.

A user with a unique input in ci can identify his own message output by the core mix-network
(in plaintext after c′i is decrypted) and identify the values of switching variables in every EBMG
the ciphertext went through2. Using this information, the user can further identify the initial input
positions of the output plaintexts (after the final output ciphertexts are decrypted) with a certain
probability in relation to the distances between the ciphertexts. This is because after going through
the core shuffling, although all input ciphertexts are output to a different output position, the
distances between those ciphertexts (Definition 2) are constant.

Definition 2. The function ∆(ca, ct) denotes the distance of the target ciphertext ct from the an-

chor ciphertext ca. The value of ∆(ca, ct) = (log2 ε(ca, ct)) − 1, where ε(ca, ct) denotes the number

of elements in the smallest set of 2k successive ciphertexts {ci, ci+1, . . . , ci+2k
−1} containing ca and

ct, the value of i = µ2k + 1, and µ is an integer.

For n number of inputs, there are log2 n bits of switching variables determining the final output
positions of each ciphertexts. Each of the bits indicates the value of each switching variable in each
EBMG that the ciphertext went through, where the most significant bit indicates the value of the
switching variable in the EBMG in SVm, and m = log2 n.

For n number of inputs, and 1 ≤ a, t ≤ n, a malicious user with a unique plaintext input in
c′a can identify the initial input position t of the final ciphertext output c′t from 2∆(c′a,c′t) possible
number of initial input ciphertexts. This is because ∆(ca, ct) = ∆(c′a, c

′

t). The malicious user requires
∆(c′a, c

′

t) bits of switching information on the final ciphertext output of c′t to determine the initial
input position of c′t.

Since the smallest possible distance ∆ between two ciphertexts is 0, shuffling using the core
mix-network only achieves pairwise privacy. Furthermore, the privacy of the core mix-network can
be compromised when half of the users collaborate, such that each of the ciphertexts input by
the honest user is an immediate neighbour (have the minimum distance of ∆ = 0) of one of the
ciphertexts input by the malicious users. The best case scenario for an honest user is when the
distance between his ciphertext ct and the ciphertext of a malicious user ca is maximum, where
∆(ca, ct) = (log2 n) − 1.

An attack scenario with 8 input ciphertexts and one malicious user is as follows. Assume n = 8,
where a malicious user submits a unique input c1 into the core mix-network. As input c2 is in the
same pair with c1, their distance is ∆(c1, c2) = 0. Thus, the malicious user can successfully identify
the user with input c2. We call c2 the immediate neighbour of c1 as they have the minimum possible
distance. The value of ∆(c1, {c3, c4}) = 1, and ∆(c1, {c5, . . . , c8}) = 2. Thus, the malicious user can
identify the senders of c3 and c4 as one of two users, and identify the senders of {c5, . . . , c8} as one
of four users. This is because the malicious user can only guess the switching position d in EBMG

2 The user can trace-back and deduce the value of each switching variable d in each EBMG that his ciphertext went
through, from the EBMG in SVm to the EBMG in SV1. Thus, the switching position in those EBMGs are revealed.



in SV1 for c3 and c4, and need to guess the switching position d in EBMG in SV2 and SV1 for
{c5, . . . , c8}. Note that {c5, . . . , c8} have the maximum possible distance to c1.

When the number of choices for the input messages is very small compared to the number of the
input n (e.g. in a “yes/no” voting system), the probability for any input to be unique is negligible.
Thus, the privacy of the mix-network can be achieved in most cases. However, when the number
of choices for the input messages is not small enough, the probability for an input to be unique is
not negligible anymore. Then, the previously described attack scenario is feasible. In this case, a
solution is required to overcome this problem. We provide a method to prevent the attack using
two rounds of shuffling in the next subsection.

5.3 Two Rounds of Shuffling

Limiting the allowable input format is not acceptable for schemes requiring more flexible input
format, such as in e-auction schemes with unspecified threshold of biddable price, or in e-voting
schemes using preferential system. Two rounds of mixing are required to sufficiently alter the
relative positions of the ciphertexts, such that the ciphertexts are in maximum distances to each
other.
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Fig. 4. Public fixed n-to-n permutation replacing adjacent messages for maximum distances in each pair of ciphertexts.

We employ two rounds of mixing and a public fixed n-to-n permutation in between the two
rounds. The public n-to-n permutation (Figure 4) permutes the ciphertexts, such that the final
output distance in any two consecutive ciphertexts in the pair is maximum. The two rounds of
mixing protocol are as follows:

1. Input ciphertexts are shuffled as in the core mixing protocol (Section 5.1). The output cipher-
texts of the first round of mixing are directly forwarded to the public fixed n-to-n permutation.

2. For n ciphertexts ci, the public fixed n-to-n permutation outputs cj = c(i+k(i mod 2)) mod n, where
i = 1, . . . , n.

3. The output ciphertexts of the public fixed n-to-n permutation are forwarded as inputs to the
second round of mixing, shuffled as in the core mixing protocol (Section 5.1).

4. The final output ciphertexts are decrypted in a threshold manner by some decryption authorities
(e.g. the mixers themselves).

The final output ciphertexts are not decrypted at the end of the first round, and are directly
forwarded to the public fixed n-to-n permutation before being submitted as inputs to the second
round. A malicious user can only guess the initial position of the message at the second round. Thus,
the best case scenario for a malicious user is to guess the initial position of his final ciphertext output



pair from the other half of the initial input ciphertexts with a probability of 2
n . The probability

of a malicious user successfully identifying the initial input ciphertext position of any of the other
ciphertexts is 1

n−1 . A collaboration of n − 1 malicious users is required to successfully compromise
the privacy of the mix-network.

6 Analysis

Security and efficiency of the proposed mix-network is analysed in this section. Correctness and
privacy level of the mix-network are discussed. Privacy and computational cost comparison of the
proposed scheme and other efficient schemes is also provided.

6.1 Security

Mixing in each EBMG in the new mix-network is correct as its proof of correctness is permutation-
based and the batch verification technique in Section 3 fails with a negligible probability. Thus, the
new mix-network is correct with a very large probability even if some users and mixers collude to
attack. This is an advantage over the scheme by Peng et al. [24].

As the batch verification technique is honest-verifier-zero-knowledge, each EBMG is private. Pri-
vacy of the new mix-network depends on two factors: security of batch re-encryption in Section 3.1
and the diffusion of the inputs.

– Security of batch re-encryption
As stated in Section 3.1, the complexity of the mentioned brute-force attack against privacy
is the product of two permutations: the shuffling permutation π() and the random-factor-
distribution permutation φ(). As extended binary gates are applied, the complexity of π() on
the jth level is reduced to 2n/2j

. However, the complexity of φ() is still n! as the re-encryption
is level-based. For a large n, the brute-force attack to guess the permutation and compromise
the privacy of the shuffling (as described in Section 3.1) is impractical.

– Diffusion of the inputs
Any input to the mix-network may be shuffled to any of the n outputs in the mix-network.
Moreover, for any input, the n possible shuffling are equally likely. Thus, diffusion of any single
input is optimally achieved.
Since there are only two possible permutations in each extended binary gates, diffusion of all
the inputs as a whole is not complete. After the core mixing process has concluded, a malicious
user with a unique input in ca can identify the message of his pair input shuffled by the same
EBMG in SV1. Furthermore, collaboration of malicious users can further weaken the privacy of
the core mix-network. We refer to Section 5.2 and Section 5.3 for a detailed analysis and two
alternatives to alleviate this problem.

The number of possible permutations using the core mix-network is 2n−1, where each permu-
tation is equally likely. Two rounds of mixing achieves 22(n−1) possible permutations. Although
the proposed mix-network does not offer all possible permutations, we consider the privacy
level to be strong enough for many applications requiring a large number of messages to be
communicated anonymously, i.e. where n is large.

Table 1 compares the privacy of our proposed scheme and other high-performance mix-network
schemes. The degree of privacy is measured in terms of diffusion offered by the mix-network. A mix-
network with perfect privacy has n! permutations, each of them equally likely. It is demonstrated
that the new scheme achieves strong enough privacy for most applications.



Table 1. Comparison of privacy level in terms of diffusion achieved, where ε indicates the number of honest mixers
in a t-out-of-m threshold cryptosystem and k is the size of a gate (group).

Mix-network scheme One input All inputs Uniform

Abe [1] 1 among n if ε > t n! permutations if ε > t no

Abe & Hoshino [2] 1 among n if ε > t n! permutations if ε > t yes

Furukawa & Sako [11] 1 among n n! permutations yes

Neff [17] 1 among n n! permutations yes

Groth [14] 1 among n n! permutations yes

Peng et al [24] 1 among n if ε > t (k!)ε permutations yes

Our scheme (core mix-network) 1 among n 2n−1 permutations yes

Our scheme (two rounds) 1 among n 22(n−1) permutations yes

In the proposed mix-network, if one mixer is compromised or the mixing for that mixer is re-
vealed, the number of possible shuffling for an input and the number of possible permutations in the
mix-network is reduced by half (i.e. reveal the values of switching variables as in Section 5.2), while
the rest of possible shuffling and permutations are still equally likely. Addressing this problem to
achieve a stronger privacy, the entire mixing process can be repeated a number of times sufficiently
(i.e. extend from Section 5.3).

6.2 Performance

The computational cost of one mixing operation (core mix-network) is as follows:

– Re-encryption: 4(log2 n)2 full-length exponentiations.

– Proof of valid mixing: 6(n − 1) full-length exponentiations.

– Verification of valid mixing: 10(n − 1) full-length exponentiations.

Table 2. Comparison of correctness computational cost for shuffling the ciphertexts in full-length exponentiations.

Mix-network scheme Correctness Mixing Verification of correct mixing

Abe [1] Strong > 16(n log2 n − n + 1) > 16(n log2 n − n + 1)

Furukawa & Sako [11] Strong 40n 40n

Groth [14] Strong 32n + 12n/κ + 12 24n + 12n/κ + 24

Peng et al [24] Weaker 8n + 4k(4k − 2) 16k2

Our scheme (one round) Strong 4(log2 n)2 + 6(n + 1) 10(n − 1)

Our scheme (two rounds) Strong 8(log2 n)2 + 12(n + 1) 20(n − 1)

We compare correctness and computational cost of the proposed mix-network against other mix-
network schemes currently considered efficient. The comparison figure is summarised in Table 2
based on the use of ElGamal cryptosystem, where we assume 4 mixers are used in the mix-
network [11, 17, 14], n is the number of inputs to the mix-network, k is the size of group in the
scheme by Peng et al. [24] and κ is a parameter smaller than n.

In the mix-network scheme by Abe [1], we only provide a lower threshold of its computational
cost as the concrete number of gates was not provided. The mix-network by Neff [17] is not included



in the table as the protocol is not provided in great detail. However, its performance should be
similar to the mix-network scheme by Groth [14], as they employ similar techniques.

Research in mix-network schemes mainly focus on improving the efficiency of verifying correct
mixing operation. Although the performance gain is not significant, the batch re-encryption tech-
nique in Section 3.1 can also be implemented in other re-encryption chain mix-network schemes to
improve their overall efficiency.

From Table 2, our proposed mix-network scheme achieves a better trade-off between correctness
and efficiency. The only mix-network more efficient than ours is the scheme by Peng et al. [24],
which has weaker correctness.

7 Conclusion

The new mix-network obtains the best trade-off between correctness, privacy and high efficiency.
Extended Binary Mixing Gates (EBMGs) is applied to achieve high efficiency. Permutation-based
proof of mixing correctness is employed to guarantee high level of correctness. Although the number
of possible permutations is reduced as a result of batch verification, privacy of the mix-network
(especially privacy of any single input) is still strong.

The proposed batch re-encryption technique can be implemented in other re-encryption chain
mix-network schemes to increase their performance.
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