
SCIS'99 The 1999 Symposium on

Cryptography and Information Security

Kobe, Japan, January 26-29, 1999

The Institute of Electronics,

Information and Communication Engineers

Software Protection Using Public Key Infrastructure

Byoungcheon Lee

�

sultan@icu.ac.kr

Kwangjo Kim

�

kkj@icu.ac.kr

Abstract| In this paper we propose a new software protection system using Public Key Infrastruc-

ture(PKI) and introduce the concept of User Dependent Software(UDS). Certi�cate is an electronic

document which combine an user's identity and public key and is signed by a Certi�cate Author-

ity(CA), so it can be used to represent user's social identity. UDS includes user speci�c information

encrypted with user's public key appearing in user's Certi�cate. To use the software user has to present

the private key corresponding to the Certi�cate. So UDS is for only one user.

It is expected that PKI will be set up throughout the society and Certi�cate will be used for a

large number of applications in the near future. We propose to use PKI for software protection. The

private key corresponding to a Certi�cate is private secret. Copying other's UDP is of no use without

the legitimate user's private key, so illegal software usage is prevented. Using this technology, software

venders can sell and deliver software via online service, which will reduce a large amount of cost for

manufacturing and deliverying software products.

Keywords: Public Key Infrastructure, Software Protection, Copy Protection, Copyright Protec-

tion, User Dependent Software.

1 Introduction

The advances in computer and information society

are changing our society greatly and are lead by soft-

ware developers in many parts. But one of the headaching

problems regarding the software industry is the unau-

thorized use and distribution of software. Copyright

laws protect developer's right in legal sense, but are

hardly enforced causing great loss to the software com-

panies. Software protection is a term to prevent illegal

use of software and protect developer's copyright.

Software protection can be divided into two cate-

gories, one is copyright protection and the other is copy

protection. For legal protection of copyright, develop-

ers can register their products to the authorized organi-

zation and they can argue their right later when illegal

copying of their idea or code occurs. As a technical

tool for copyright protection, there have been exten-

sive researches on watermark technology. By adding a

unique watermark on multimedia data, illegal copying

and use of the protected data can be detected later.

Recently many useful technologies to add developer's

ID to software were developed, for example by using

dummy variables or by using two equivalent operations

selectively[1, 2, 3].

For copy protection, J. Gosler addressed many tech-

nologies such as signatures on oppy disks(magnetic

and physical) and Hardware Security Devices(HSD),

and also introduced the concept of Software Analysis

Denial(SAD) which is to prevent attacker from analyz-

ing the software[4]. A. Herzberg proposed Public Pro-

tection of Software(PPS) which required a new CPU

�

School of Information and Computer Eng., Information and

Communications Univ., 139 Kajong-dong, Yusong-gu, Taejon,

305-350, Korea

architecture[5]. O. Goldreich[6] and R. Ostrovsky[7]

proposed software protection schemes where encrypted

program runs on a protected chip and the values stored

in the general-purpose memory are hidden using en-

cryption. These schemes seem to be ideal protection

systems, but does not seem to be practical because

they require basic architectural change from current

computer systems.

In software industry, many ad-hoc methods have been

used. For example, requiring license number or access

code when installing a software, using hardware key

lock, requiring vender supplied special oppy disk, us-

ing IC card where secret key is saved, generating a

software only for speci�ed system, and on-line regis-

tration when installing network application have been

used. These methods do not provide general and su�-

cient protection mechanism. One of the main reason is

the lack of convenient means for authenticating user's

identity. In this sense the forthcoming PKI trust model

is an e�cient and useful candidate for software protec-

tion.

It is expected that PKI trust model will change the

society drastically. Until now there have been manyCA

systems implemented using the X.509 standard[8], and

Public Key Infrastructure based on X.509(PKIX)[9] is

under standardization process. It is expected that in

the near future each personnel in society will use Cer-

ti�cate issued by CA for a broad range of applications

such as Electronic Commerce(EC), e-mail transfer, mo-

bile communications, etc, and the private key will be

protected in a secure hardware device such as IC card.

The operation using private key is user's responsibility

and cannot be repudiated, so users have to be careful

enough to protect their private key. When CA issues a



Certi�cate, it guarantees user's identity and legal usage

of keys.

In this paper we propose a new software protection

system using PKI and introduce the concept of User

Dependent Software(UDS). The software provider gen-

erates and provides UDS which is compiled with user

dependent information including user's Certi�cate. For

a user to access the UDS, he or she has to present the

private key corresponding to the Certi�cate.

In section 2, we describe our basic approach and two

proposed schemes for constructing UDP. The special

features of the proposed systems appear in section 3.

A possible scenario of software sale and delivery is dis-

cussed in section 4. Conclusion and further works are

described in section 5.

2 Proposed schemes

2.1 Our approach

The basic lines of our approach are as follows.

� Software provider generates and provides a User

Dependent Software(UDS) which is compiled with

user speci�c information encrypted with user's

public key appearing in user's Certi�cate.

� An user has to present his or her private key cor-

responding to the Certi�cate to use the software.

We represent the basic structure of the proposed soft-

ware protection system in Figure 1. The protected

software is divided into two subparts, User Indepen-

dent Part(UIP) and User Dependent Part(UDP). UIP

is a group of subprograms where most of the functions

of the software are implemented, but cannot be exe-

cuted alone and is accessed only by UDP. The Dynamic

Link Library(DLL) �les in Windows are good exam-

ples. UDP is an executable program and is compiled

with user speci�c information encrypted with user's

public key. UDP has the role to control access to UIP.

To use the software, user has to present his or her pri-

vate key to UDP to prove that he or she can decrypt

the encrypted information successfully. The only user

having the private key can use the software, so the

protected software is for only one user. The reason

dividing the software into UIP and UDP is to reduce

the online compile time for generating UDP and to dis-

tribute UIP freely in advance. Our main interest is how

UDP is constructed using user's public key and how

user's private key is used to prove the authenticity. In

following sections, we propose two possible designs of

UDP. One is using encrypted data block and the other

is using encrypted executable module.

2.2 UDP with encrypted data block

In this method UDP is an access control application

compiled with the 5 user-dependent data blocks as de-

picted in Figure 2a. When a customer(user) orders

a copy of software, software provider asks user infor-

mation including user's Certi�cate. Software provider

generates the 5 user-dependent data blocks as follows

and its ow diagram is depicted in Figure 2b.

Figure 1: Basic structure of the proposed software pro-

tection system.

� UserInfo : user Name, supplier address, user's

Certi�cate, and purchase date, etc.

� ProductInfo : provider name, provider address,

provider's Certi�cate, product number, and term

of validity, etc.

PDB = H(UserInfojjProductInfo)

� EDB(Encrypted Data Block) : encrypted block

of PDB using user's public key

EDB = E

PK

U

(PDB)

� SDB(Signed Data Block) : signed block on PDB

with provider's private key

SDB = S

SK

P

(PDB)

UserInfo includes user name, user address, user's Cer-

ti�cate, and purchase date, etc. ProductInfo includes

provider name, provider address, provider's Certi�cate,

product number, and term of validity, etc. Plain Data

Block(PDB) is the hashed value of UserInfo and Pro-

ductInfo. PDB is encrypted with user's public key

PK

U

to produce Encrypted Data Block(EDB) and the

provider signs on PDB with his private key SK

P

to

produce Signed Data Block(SDB). The provider gen-

erates UDP by compiling access control module with

these data blocks. The 5 user-dependent data blocks

are embedded in the access control application in bi-

nary form, so these data blocks will not be accessible

in other way.

When user tries to use the software, he or she has

to present the private key SK

U

to UDP. When EDB

is successfully decrypted to PDB using the private key,

UDP permits access to the subprograms in UIP. By ver-

ifying the provider's signature on SDB, user can con-

�rm the validity of the software. If user's private key

SK

U

is saved in a hardware device such as IC card,

the decryption process can be designed to operate in

the hardware device for the user's private key not to

be exposed outside.

2.3 UDP with encrypted executable module

The method described above has a possible weak

point that the 5 user-dependent data blocks and access



(a)

(b)

Figure 2: UDP with encrypted data block. (a) Struc-

ture and operation of UDP, (b) Generation of user-

dependent data blocks

control module are embedded in the binary executable

application in available form(not in encrypted form).

A powerful attacker may possibly try to analyze the

software, for example using software debugger, and try

to modify the data blocks or bypass the access control

module. So we propose another method of constructing

UDP where the access control module is encrypted.

Figure 3a represents the generation process of UDP

which includes encrypted executable module. Access

Control Application(ACA) is an executable module which

can access UIP. ACA is encrypted with a randomly

generated session key K to generate Encrypted ACA.

Hashed value of ACA, H(ACA), is also encrypted with

K to generate Encrypted Hash. Finally the random

session key K is encrypted with user's public key to

generate Encrypted Key. These three parts are con-

catenated to form UDP.

When user tries to use the software, he or she has to

present the private key SK

U

to UDP. As depicted in

Figure 3b, the random session keyK is recovered by de-

crypting Encrypted Key with SK

U

. Using the symmet-

ric key K, ACA and H(ACA) are recovered from En-

crypted ACA and Encrypted Hash respectively. If the

newly computed hashH

0

(ACA) and recovered H(ACA)

coincide, the execution of ACA is permitted.

In this model, the executable ACA is embedded in

UDP in encrypted form. So possible attacker has to

decrypt UDP �rst to start any possible analysis of the

software.

(a)

(b)

Figure 3: UDP with encrypted executable module. (a)

Generation of UDP, (b) Execution of UDP

3 Features of the proposed software pro-

tection systems

The proposed software protection systems can pro-

vide software providers with essential protection mech-

anism of software developer's copyright and prevention

of illegal copying of software. Software is sold only

to users authenticated by CA. The software sold to a

customer is only for one user who has the private key

corresponding to the Certi�cate. If the private key is

protected in hardware device such as IC card, illegal

copying of private key will be very di�cult. If the Cer-

ti�cate is used for many important applications such as

EC, e-mail transfer and mobile communication service,

illegal copying of private key is user's responsibility.

If it is assumed that PKI is widely used in society, no

more cost is needed for implementing the proposed soft-

ware protection mechanism. If most individuals have

their own Certi�cate and own identi�cation card where

the private key is saved, they can easily order the soft-



ware with the Certi�cate and use it with the identi�-

cation card.

The proposed software protection systems provide

with special features that other existing protection sys-

tems do not provide with.

� The software can be installed and used in as many

computer systems as user wants. To use the soft-

ware, user identi�cation card is required. So us-

ing in many computer systems is not violating

the copyright laws.

� The same private key can be used to protect many

software packages in the same computer system.

� The software provider can produce software for

many legitimate users. In most simple way users

can have their own UDP sharing the UIP in a

computer system. In other way the software provider

can produce UDP which includes many user's

user-dependent information or can produce UDP

with a group key.

� Installing software is very simple in this model.

Software providers can distribute UIP freely in

advance to users through hardware manufactur-

ers or internet services. Because UIP is already

installed in the computer system, user only has

to buy UDP through network service.

� Using the public key and private key of user,

the data produced using the software can be en-

crypted and/or signed to protect the data.

4 Online scenario of software sale and

delivery

Current study on EC is focused mainly on online pay-

ment and electronic money. In current EC model, on-

line delivery of digital product is not used although on-

line payment is executed. If concrete software protec-

tion mechanism is provided as proposed in this study,

the production, sale and delivery of software can be

executed via online service. A possible scenario of soft-

ware sale and delivery is represented in Figure 4.

* Preparation

� Software developer develops software that is com-

posed of UIP and UDP.

� UIP is distributed freely in advance through hard-

ware manufacturers or online services.

� Software provider prepares online service system

for generation of UDP, electronic payment and

software delivery.

� User acquires UIP downloading from online ser-

vice or buying computer system from hardware

manufacturer.

� Software provider and user get their Certi�cates

from CA.

* Online sale and delivery of software

� Customer connects to software provider system

and orders a copy of software with his or her Cer-

ti�cate. In this stage, customer and provider are

mutually authenticated using public key technol-

ogy.

� Online electronic payment is done.

� Provider system generates UDP using customer's

Certi�cate.

� UDP is delivered to customer system through

network.

* Using the software

� The software is installed in user system simply by

setting the connection between UDP and UIP.

� User has to present his or her private key to use

the software.

The above scenario is an example of software sale

and delivery using the proposed software protection

system. Many other scenarios are also possible depend-

ing on PKI environment and customer condition. If

the proposed scenario is widely used in software indus-

try, huge amount of cost for manufacturing physical

software package, delivering product and maintaining

vender network will be reduced, lowering the price of

software.

Figure 4: A possible scenario of software sale and de-

livery using the proposed software protection system.

5 Conclusion

A new software protection system using Public Key

Infrastructure(PKI) and User Dependent Software(UDS)

was proposed. Using the Certi�cate, the identity of

customer is clearly authenticated during purchase pro-

cess. An user has to present his or her private key

to use the software. Since UDS is for only one user,

copied UDS is of no use without legitimate user's pri-

vate key. This system can be adapted immediately

with no additional cost if PKI is widely established and

used. Besides of the essential protection mechanism,



the proposed system provides with many characteris-

tic features such as multiple software protection with

the same key, free distribution of UIP in advance, in-

stallation in multiple computer systems, etc. Adapting

the proposed software protection system, it is expected

that the software industry will be changed very much.

In this paper we assumed the situation that PKI was

widely spread over the society. Before the settlement

of PKI, we can temporarily use another key manage-

ment system such as saving private key as electronically

protected key �le. Still other way is that the software

provider roles as a Certi�cate Authority(CA) and is-

sues Certi�cate for customers. The security analysis

of the proposed UDS mechanism and software distri-

bution protocols will be further a challenging job for

cryptanalysts.

References

[1] N. Hirose, et al., \A proposal for software protec-

tion", SCIS'98-9.2.C, The proceedings of the 1998

Symposium on Cryptography and Information Se-

curity, Shizuoka, Japan, Jan. 28-31, 1998

[2] A. Monden, et al., \A watermarking method for

computer programs", SCIS'98-9.2.A,The proceed-

ings of the 1998 Symposium on Cryptography and

Information Security, Shizuoka, Japan, Jan. 28-31,

1998

[3] T. Kitagawa, et al., \Digital watermark for Java

programs", SCIS'98-9.2.D, The proceedings of the

1998 Symposium on Cryptography and Informa-

tion Security, Shizuoka, Japan, Jan. 28-31, 1998

[4] James R. Gosler, \Software protection: Myth or

reality?", Advances in Cryptology { CRYPTO '85,

140-157

[5] A. Herzberg and S. S. Pinter, \Public protection

of software", Advances in Cryptology { CRYPTO

'85, 158-179

[6] O. Goldreich, \Towards a theory of software

protection and simulation by oblivious RAMs",

STOC 87

[7] R. Ostrovsky, \An e�cient software protection

scheme", Advances in Cryptology { CRYPTO '89,

610-611

[8] ITU-T Recommendation X.509, The Directory:

Authentication framework, 1993

[9] Public-Key Infrastructure(X.509),

http://www.ietf.org/html.charters/pkix-

charter.html


