
Secret Signatures: How to Achieve Business
Privacy Efficiently?

Byoungcheon Lee1?, Kim-Kwang Raymond Choo2??, Jeongmo Yang1, and
Seungjae Yoo1

1 Department of Information Security, Joongbu University
101 Daehak-Ro, Chubu-Myeon, Geumsan-Gun, Chungnam, 312-702, Korea

{sultan,jmyang,sjyoog}@joongbu.ac.kr
2 Australian Institute of Criminology

GPO Box 2944, Canberra ACT 2601, Australia
raymond.choo@aic.gov.au

Abstract. Digital signatures provide authentication and non-repudiation
in a public way in the sense that anyone can verify the validity of a digital
signature using the corresponding public key. In this paper, we consider
the issues of (1) signature privacy and (2) the corresponding public prov-
ability of signature. We propose a new digital signature variant, secret
signature, which provides authentication and non-repudiation to the des-
ignated receiver only. If required, the correctness of the secret signature
can be proven to the public either by the signer or the receiver. We con-
clude with a discussion to demonstrate the usefulness of the proposed
cryptographic primitive (e.g., achieving signature privacy in an efficient
manner).
Keywords: secret signature, signature privacy, public provability, key
agreement, anonymity, public auction.

1 Introduction

Digital signature, first proposed by Diffie and Hellman in 1976 [11], is an elec-
tronic version of handwritten signatures for digital documents. A digital signa-
ture on some message, m, is generated by a signer, A, using a secret signing key,
skA. The correctness of the generated signature is verified using the correspond-
ing public key, pkA. It provides authentication and non-repudiation in a public
way, in the sense that anyone can verify the validity of the digital signature,
since pkA is public information.

? This work was supported by Korea Research Foundation Grant funded by Korea
Government (MOEHRD, Basic Research Promotion Fund), grant No. KRF-2005-
003-D00375.

?? The views and opinions expressed in this paper are those of the author and do not
reflect those of the Australian Government or the Australian Institute of Criminol-
ogy. This research was not undertaken as part of the author’s work at the Australian
Institute of Criminology.

2

Signature Privacy. In this paper, we consider a business scenario where both
the sender (signer) and the receiver (verifier) wish to keep their exchanged sig-
natures private – we term this signature privacy. Such a (signature privacy)
property does not appear to be easily achieved using general digital signature
schemes. A ‘straightforward’ approach would be to encrypt a digital signature
with the receiver’s public key (or with an agreed key) so that only the legitimate
receiver can decrypt and retrieve the original signature. This is the so-called
sign-then-encrypt approach, which is widely adopted in the real world. In or-
der to implement the signature and encryption operations in a more efficient
manner, signcryption [26] was proposed in 1997 by Zheng. Alternative solutions
to achieve signature privacy include using special signature schemes that limit
the verifiability of the signature only to a designated entity (e.g., the designated
verifier signature (DVS) [6, 15] and the limited verifier signature (LVS) [1, 9]).

Public Provability of Signature. Assume that we use a signature scheme
designed to provide signature privacy. In the event that a dispute arises between
a signer and a receiver during a business transaction, any chosen third party
(e.g., a judge or the public) should be able to prove the correctness of the digital
signature. We term such a property the public provability of a signature. This
property can be easily achieved using either general digital signature schemes
(i.e., by verifying the signature using the signer’s public key) or the sign-then-
encrypt schemes (i.e., by decrypting the encrypted signature and verifying the
retrieved signature in a standard way). In the latter sign-then-encrypt approach,
proving the correctness of decryption is a computationally expensive operation
(e.g., include zero-knowledge proofs).

If we use signature schemes designed to provide signature privacy, then the
public provability of generated signatures becomes an important requirement
to ensure the fairness of business transactions. Although signcryption schemes
appear to provide such a public provability feature, the original authors have not
specified (this feature) explicitly. DVS and LVS schemes. DVS and LVS schemes,
on the other hand, are unable to provide the public provability feature, since
the designated verifier cannot transfer his conviction to others as the designated
verifier is able to open the signature in any way of his choice using the knowledge
of his/her private key.

Our approach. In this paper, we introduce a new digital signature variant,
secret signature (SS), designed to provide signature privacy. Advantages of our
proposed SS scheme include providing all the following properties efficiently:

1. Authenticity and non-repudiation;
2. Signature privacy; and
3. Public provability of signature.

More specifically, in our proposed SS scheme:

– A signer, A, computes a signature using A’s private key together with the
public key of a receiver, B.

– B can then verify the signature using B’s private key and A’s public key.

3

– Given a (signed) message, no one other than the designated receiver can
identify the message’s authorship (e.g., what message is signed by whom
and addressed to whom).

– If required, either A or B can provide a proof of validity of the signature.
Given the proof of validity, any third party will be able to verify the validity
of the associated signature.

To obtain the above-mentioned functionalities, we combine a secure signature
scheme with a non-interactive one-way key agreement scheme between a signer
and a receiver. In other words, our proposed SS can be viewed as a signature
on a message and a secret agreed key. The designated receiver can recover the
secret agreed key and verify the signature, but no third party can identify what
message is signed by whom and addressed to whom.

Secret signature is useful in many real-world applications where

1. the privacy of the generated signature needs to be maintained, but the au-
thorship of the signature can be publicly proven at a later stage,

2. message confidentiality is not required, and
3. efficiency is critical.

A main distinction between our proposed SS scheme and general signcryption
schemes3 is that SS scheme provides signature privacy without using encryption.
Thus it is more efficient than signcryption in many applications where message
confidentiality is not required. We describe some application examples in Sec-
tion 7.

Outline. We define the proposed SS scheme and provide security definitions
in Section 2. In the following section, a concrete construction example of SS
in discrete logarithm (DL)-based cryptosystems and the security proofs in the
random oracle model are presented. We then present a brief discussion on how
to prove the validity of SS in Section 4. We compare the features of SS with
previously published signature privacy-related schemes in Section 5 and compare
the efficiency of SS with signcryption in Section 6. Several possible applications
are presented in Section 7. Section 8 concludes this paper.

2 Definitions

2.1 Definition of Secret Signature Scheme

There are two entities in the SS scheme, namely, a signer (sender), A, and a
verifier (receiver), B. The formal definition of SS scheme is as follows.

Definition 1 (Secret Signature Scheme) A secret signature (SS) scheme con-
sists of the following six algorithms.

3 In this paper, we do not consider various features provided by different variants of
the signcryption scheme (e.g., [10] and [17]).

4

1. Setup : params ← SS.SetUp(1k).
A probabilistic algorithm, SS.SetUp, which takes a security parameter, k, as
input and outputs the public parameters, params.

2. Key Generation : (pk, sk) ← SS.KeyGen(params).
A probabilistic algorithm, SS.KeyGen, which takes the public parameters,
params, as input and outputs a pair (pk, sk) of matching public and private
keys. For example, the public/private key pairs of the signer and receiver,
(pkS , skS) and (pkR, skR), are generated using SS.KeyGen.

3. Signing : (V, seed) ← SS.Sign(params,m, skS , pkR).
A probabilistic algorithm, SS.Sign, run by the signer, which takes as input
the public parameters, params, a plaintext message, m ∈ {0, 1}∗, signer’s pri-
vate key, skS, and receiver’s public key, pkR; and outputs a secret signature,
V and the random seed which was used to compute the signature. Signer has
to keep seed secretly by himself.

4. Verification : result ← SS.V erify(params, V,m, pkS , skR).
A deterministic algorithm, SS.V erify, run by the receiver, which takes as
input the public parameters, params, a secret signature, V , a plaintext mes-
sage, m, the signer’s public key, pkS, and receiver’s private key, skR, and
outputs result. If V is a valid secret signature, then result = valid, otherwise,
result = invalid. If correct signature V = SS.Sign(params,m, skS , pkR)
is tested, the verification result SS.V erify(params, V,m, pkS , skR) 7→ result
should be valid.

5. Public Proving.
A probabilistic algorithm that is run by either the signer or the receiver to
prove the validity of the secret signature to public.
Run by the signer : proofS ← SS.Proof.Signer(params, V, seed).

SS.Proof.Signer which takes as input required parameters, params, the
signer’s random seed used to compute the secret signature, and the secret
signature, V , and outputs a proof, proofS.

Run by the receiver : proofR ← SS.Proof.Receiver(params, V, skR).
SS.Proof.Receiver which takes as input required parameters, params,
the secret signature, V , and the receiver’s private key, skR, and outputs
a proof, proofR.

6. Public Verification : result ← SS.PubV erify(params,m, V, pkS , pkR, proof).
A deterministic algorithm, SS.PubV erify, which takes as input the pub-

lic parameters, params, a message m, a secret signature, V , the public keys
of the signer and the intended receiver, and the validity proof proof (either
proofS or proofR), and outputs a verification result, result (either valid or
invalid).

2.2 Security Definitions

Informally we consider the following security requirements for the proposed SS
scheme described in Definition 1.

Correctness. If a secret signature is generated by following the protocol cor-
rectly, then the result of the verification always return valid.

5

Unforgeability. Anyone except the signer can have a non-negligible advantage
in forging a secret signature.

Non-Repudiation. The signer is unable to repudiate the generation of a se-
cret signature that the signer has previously generated. If unforgeability is
provided, then non-repudiation is obtained consequently.

Signature Privacy. The secret signature generated by the signer is verifiable
only by the designated receiver. No other entity except the signer and the
receiver is able to have a non-negligible advantage in distinguishing the secret
signature. Signature privacy is defined in terms of invisibility.

Public Provability. The validity of the signature can be proven to public by
the signer or the verifier, if the need arises.

To define the unforgeability and non-repudiation more formally, we recall
the widely accepted security notions on digital signatures, unforgeability against
chosen-message attacks. In order to provide non-repudiation, we would like to
prevent the forgery of A’s signature without knowledge of A’s signing key, except
with negligible probability. As shown in the seminal paper of Diffie and Hellman
[11], the security of such a scheme in the public key setting typically depends on
the existence of a one-way function. A formalized and widely accepted security
notion for digital signature was introduced by Goldwasser, Micali, and Rivest
[14], which they term existential unforgeability under adaptive chosen-message
attack (EF-ACMA).

However, in our proposed SS scheme, there are two inputs: the message to be
signed and the intended recipient’s public key. Hence, we extend the standard
security definition to the existential unforgeability under the adaptive chosen-
message chosen-receiver attack (EF-ACMCRA) in which the attacker is allowed
to query secret signatures to the signing oracle for any chosen message and
receiver’s public key adaptively. An unforgeability of secret signature can be
defined in terms of the following unforgeability game.

Game Unforgeability: Let F be a forger and k be a security parameter.

1. (Initialization) First, params ← SS.SetUp(1k) is executed and the signer’s
key pair (pkS , skS) ← SS.KeyGen(params) is computed. pkS is given to F .

2. (Training) F is allowed to ask a series of SS.Sign queries for any combination
of message m and receiver’s public key, pkR, chosen by F to the signing
oracle. To do this, F computes (pkR, skR) ← SS.KeyGen(params), and asks
secret signature to the signing oracle by sending (m, pkR, skR). Then the
signing oracle provides valid secret signatures V .

3. (Output) F outputs a pair (m′, pk′R, sk′R, V ′) as a forgery of a secret signature
on message m′ from the signer S to a receiver R′.

F wins the game if valid ← SS.V erify(params, V ′,m′, pkS , sk′R) and the
tuple (m′, pk′R, sk′R, V ′) has never been queried to SS.Sign. In this definition of
unforgeability we assume that receiver’s key pair is known to F and the signing
oracle. Without the knowledge of receiver’s private key the signing oracle cannot
simulate secret signature and F cannot verify the validity of received secret

6

signature. Since the main concern of the unforgeability game is the unforgeability
of signer’s signature, this assumption is reasonable.

Definition 2 (Unforgeability) A secret signature scheme is said to be se-
cure in the sense of existential unforgeability under the adaptive chosen-message
chosen-receiver attack (EF-ACMCRA), if no probabilistic, polynomial-time (PPT)
forger, F , can have a non-negligible advantage in Game Unforgeability.

Signature privacy requires that a given secret signature is a private informa-
tion between the signer and the receiver. Any other entity cannot distinguish a
secret signature from a random string in a signature space. Signature privacy
can be defined in terms of the following invisibility game.

Game Invisibility: Let D be a distinguisher. First, params ← SS.SetUp(1k)
is executed and the signer’s key pair (pkS , skS) ← SS.KeyGen(params) is com-
puted. pkS is given to D. Let (pkR, skR) ← SS.KeyGen(params) be the receiver’s
key pair. pkR is given to D. At some point D outputs a message m′ and requests
for a challenge secret signature V ′ to the challenger C. The challenge V ′ is gener-
ated by C based on the outcome of a hidden coin toss b. If b = 1, V ′ is generated
by running SS.Sign. If b = 0, V ′ is chosen randomly in the signature space. At
the end of the game, D outputs a guess b′. D wins if b = b′ and the tuple (m′, V ′)
has never been queried to SS.Sign.

In this invisibility game, receiver’s private key skR is hidden from D, since D
is not the designated receiver. The designated receiver can distinguish the secret
signature using his private key.

Definition 3 (Invisibility) A secret signature scheme is said to provide in-
visibility, if no probabilistic, polynomial-time distinguisher, D, can have a non-
negligible advantage in Game Invisibility.

2.3 General Implementation

The underlying intuition behind the general implementation of the proposed SS
schemes is to combine a secure signature scheme and a non-interactive one-way
key agreement. We denote the signer as A and the intended receiver as B.

Key agreement. Assume that A wants to send a secret signature for a message
m to B. Using a non-interactive one-way key agreement scheme A generates
an agreed secret (session) key, K, using B’s public key, pkB . For example,
in DL-based cryptosystems, A chooses a random seed rA and computes an
agreed key K = pkrA

B = gxBrA = (grA)xB .
Signing. A generates a signature, V , by signing m||K with A’s signing key,

skA. We can interpret V as a secret signature for the message m that is
privately shared between A and B, since no one else should be able to verify
V without knowledge of K.

7

Verification. B is able to compute the shared key using his private key and,
hence, verify the secret signature. Any entity other than the signer and
intended receiver cannot compute K, thus cannot determine the validity of
the signature, even cannot tell what message was signed by whom to which
receiver.

Note that signatures on the same message generated by the same signer for
the same receiver will differ from one session to another due to the additional
session key component in the generation of the secret signature. Also the session
key K provides a binding between the signature and the recipient, thus the same
signature cannot be used for other recipient.

We remark that we mainly focus on the signature privacy, rather than the
message confidentiality. Depending on the requirement of the applications, the
nature in which the actual message is exchanged can be sent in clear, sent in
ciphertext, or does not need to be sent (implicitly known to the receiver).

3 DL-based Implementation of Secret Signature Scheme

The proposed SS scheme can be implemented using different public key cryp-
tosystems (e.g., identity-based cryptosystems). In this section, we present an
implementation example of the SS scheme in the discrete logarithm-based set-
ting.

1: Setup
We assume common system parameters (p, q, g) where p and q are large
primes satisfying q|p − 1 and g is an element of order q in Z∗q . We then
require a secure cryptographic hash function, H : {0, 1} 7→ Zq, which we
will model as a random oracle [4]. For readability, we will omit the modulo
p in our subsequent equations, if it is clear. Let ∈R denote uniform random
selection.

2: Key Generation
A signer A has a long-term certified key pair (xA, yA), where xA ∈R Z∗q and
yA = gxA . A receiver B has a long-term certified key pair (xB , yB), where
xB ∈R Z∗q and yB = gxB .

3: Signing
Let m denote the message to be signed. The signer, A, selects a random
seeds rA ∈R Z∗q . Using rA, A now computes U = grA and the key to be
shared with the verifier, W = yrA

B . A computes V = rA + xAH(m,U,W). A
sends the secret signature, 〈m,U, V 〉, to the intended receiver, B.

4: Verification
The receiver, B, uses his private key, xB , to compute the exchanged key
chosen by the signer, W = UxB . B then verifies V by gV ?= U · yH(m,U,W)

A . If
V verifies correctly, then B knows that the message is indeed signed by A.

5: Public Proving
The validity of secret signature 〈m,U, V 〉 is proven to public either by the
signer or the receiver. In this stage we consider the following two cases ac-
cording to the information revealed.

8

(1) Message proving. If the receiver information needs not be exposed,
just reveal W . With the additional information, W , anyone can verify
that (U, V) is a correct signature of the signer A for the message m and
W . If only message proving is required, it is very efficient.

(2) Receiver proving. If the receiver information needs to be proven, re-
veal W and prove its correctness with respect to the receiver’s pub-
lic key. Its validity can be proven by the signer or the receiver either
non-anonymously (using the general proof) or anonymously (using the
anonymous proof) which will be described in Section 4.

6: Public Verification
Given W which is proven to be correct, anyone can verify the validity of the
secret signature by checking gV ?= U · yH(m,U,W)

A .

Signer A Receiver B

2. Key Generation
xA ∈R Z∗q , yA = gxA xB ∈R Z∗q , yB = gxB

3. Signing
rA ∈R Z∗q

U = grA ; W = yrA
B

V = rA + xAH(m, U, W)
〈m, U, V 〉−−−−−−−−−−−−−−−−→

4. Verification
W = UxB

gV ?
= U · yH(m,U,W)

A

5. Public Proving
(1) Expose W (1) Expose W = UxB

(2) Prove the validity of W (2) Prove the validity of W

6. Public Verification

gV ?
= U · yH(m,U,W)

A

Fig. 1. DL-based implementation

We prove the security of our scheme assuming the intractability of the discrete
log problem and also in the random oracle model (ROM).

Theorem 1 The proposed SS scheme is EF-ACMCRA secure (in the sense of
Definition 2) in the random oracle model under the assumption that the discrete
logarithm problem is intractable.

9

Proof Sketch. Since the proposed SS scheme is a ElGamal family signature
scheme, Forking lemma [21, 20] can be applied. We assume that there exists
a forger F (described in Definition 2) that can forge a secret signature in time
t(k) with a non-negligible advantage ε(k). In the training stage F can ask signing
queries for any combination of message and receiver pair to the signing oracle
and receive correct secret signatures from the signing oracle. The challenger C
controls all communication of F and simulate the signing queries.

The signing algorithm uses a hash function which is modeled by an random
oracle under the random oracle model. For each signing query (M, yR, xR) given
by F , C picks random integers a, b ∈R Z∗q and computes

U ← gayb
A, W ← UxR , h ← −b, V = a.

C gives h as a random oracle answer to the H(m,U,W) query and (U, V) as the
signature for (M, yR, xR) signing query. Then this simulated signatures can pass
F ’s signature verification and are indistinguishable from the real signatures.

The remaining proof is the same as the case for the original Schnorr signature.
The discrete logarithm problem can be solved in time t′(k) with advantage ε′(k)
where

t′(k) ≈ {2(t(k) + qHτ) + OB(qSk3)}/ε(k), ε′(k) ≈ q−0.5
H

where qS and qH are the numbers of signing queries and hash oracle queries,
respectively, and τ is time for answering a hash query. If a successful forking is
found, signer’s private key xA can be computed, which contradicts the discrete
logarithm assumption. ut

Theorem 2 The proposed SS scheme provides signature privacy (invisibility)
in the sense of Definitions 3 under the random oracle model, if the decisional
Diffie-Hellman (DDH) problem is intractable.

The proof for Theorem 2 generally follows that of Galbraith and Mao [13].
We assumes that there exist an adversary D, who can gain a non-negligible
advantage in distinguishing the signatures in the game outlined in Definition 3.
We now construct another algorithm, DDDH , to break the decisional Diffie–
Hellman (DDH) problem using D.

4 Proving the Validity of Secret Signature

In the public proving stage, the signer or the receiver prove the validity of secret
signature to a judge or public. Once the proof is given, anyone can verify the
validity of secret signature and non-repudiation is provided. Here we consider
the following two cases.

General Proof. In this protocol, the identity of the entity (signer or receiver)
who proves the validity of the SS is revealed, since the signer’s proof and the
receiver’s proof are distinguishable.

10

Anonymous Proof. As the name suggests, the identity of the entity who
proves the validity of the SS is not revealed, since the signer’s proof and
the receiver’s proof are indistinguishable. However, this proof is computa-
tionally more expensive than that of the general proof.

4.1 General Proof Protocol

In this protocol, either the signer, A, or the receiver, B, reveals the shared key
W and proves its validity using the proof outlined in Appendix A.

– The signer A proves ZKP (rA) : (logg U = logyB
W = rA) using his knowl-

edge of rA.
– The receiver B proves ZKP (xB) : (logg yB = logU W = xB) using his

knowledge of xB .

It is easy to see that the proofs initiated by the signer and the receiver are
distinguishable, hence the identity of the entity who had exposed the secret
signature is revealed.

4.2 Anonymous Proof Protocol

There might exist situations where we are unable to reveal the identity of the
entity who exposed the secret signature, perhaps, due to privacy or legal re-
strictions. In such cases, we cannot employ the general proof protocol presented
above. Here we show how the signer or the receiver can prove the validity of
secret signature anonymously without revealing their identity.

Note that the tuple 〈g, U, yB ,W 〉 has the special relations depicted in Fig-
ure 2. The signer knows rA(= logg U = logyB

W) and the receiver knows xB(=
logg yB = logU W).

Signer knows rA

g −−−−−−−−−−−−−−−−→ U = grA

Receiver
knows xB

y
y

yB = gxB −−−−−−−−−−−−−−−−→ W = UxB = gxBrA

Fig. 2. Special relations of the tuple 〈g, U, yB , W 〉

The anonymous proof protocol can be initiated either by A or by B. They ex-
pose the shared key W = yrA

B = UxB = grAxB and demonstrate their knowledge
of the corresponding secret information as follows.

ZKP (rA ∨ xB) : (logg U = logyB
W = rA) ∨ (logg yB = logU W = xB).

11

It is a OR combination of two zero-knowledge proofs of the equality of two
discrete logarithms described in Appendix B. A or B is able to prove the validity
of W by using their knowledge of rA or xB .

Although these two proofs by the signer and the receiver are computed dif-
ferently, any public verifier is unable to distinguish whether the proof is provided
by the signer or the receiver. If one of the party opens the secret signature anony-
mously, the other partner know that no one other than the partnering entity has
opened the secret signature. However, the party is unable to prove that the other
partnering entity has opened the secret signature. From the public’s perspective,
the identity remains anonymous.

5 Comparison of Features

Several signature variants found in the literature also provide signature-privacy-
related functionalities. We now compare these schemes with our proposed SS
scheme.

Sign-then-encrypt approach: Although this approach provides signature pri-
vacy property, it has the following disadvantage. Once the receiver decrypt
the encrypted signature and obtain the corresponding publicly verifiable sig-
nature, the message is no longer linkable to the receiver. Thus the receiver
or any third party can use it for malicious purposes. On the other hand, this
is not the case in our SS scheme as the (special) signature generated by a
signer is given to a specific receiver.

Undeniable signature [8] and designated confirmer signature [5]: In the
former scheme, the recipient has to interact with the signer to be convinced
of its validity whilst in the latter scheme, the signatures has to be verified
by interacting with an entity, the confirmer, designated by the signer. Both
signature schemes require an interactive protocol to carry out signature veri-
fication. In our proposed SS scheme only a simple and computationally cheap
algorithm is required to carry out the signature verification.

Nominative signature [16] scheme: This scheme allows a nominator (signer)
and a nominee (verifier) to jointly generate and publish the signature in such
a way that only the nominee can verify the signature and if necessary, only
the nominee can prove to a third party that the signature is valid. Although
signature privacy can be achieved using this scheme, it requires an interac-
tive protocol for the signing stage. In our proposed SS scheme, a signer is
able to generate the signature on his/her own.

Designated Verifier Signature (DVS) scheme: This scheme, independently
proposed by Jakobsson, Sako, and Impagliazzo [15]4 and Chaum [6] in 1996,
provides signature privacy. Although the designated verifier can be convinced
of the validity of the signature in the DVS scheme, the verifier is unable to
transfer the conviction to any other entity. A major difference between our
proposed SS scheme and the DVS scheme is that the latter is unable to
provide public provability of the signature.

4 Lipmaa, Wang, and Bao [19] pointed out a weakness in this DVS scheme [15].

12

Limited Verifier Signature (LVS) scheme: This scheme, first proposed by
Araki, Uehara, and Imamura in 1999 [1], differs from the DVS scheme in
that the limited verifier is able to transfer the proof to convince another en-
tity (e.g., a judge) if the signer has violated some rule non-cryptographically.
Such a proof is, however, not transferrable to a third entity. In 2004, Chen
et. al. proposed a convertible limited verifier signature scheme in a pairing-
based setting [9]. Their scheme allows the limited verifier signature to be
transformed into a publicly verifiable signature. This converted limited ver-
ifier signature, however, is rather loosely related to the limited verifier any
more since the limited verifier is unable to prove that he is the intended
recipient of the converted signature. On the other hand in our proposed SS
scheme, any receiver can prove publicly that he is the legitimate receiver of
the corresponding signature.

Anonymous signature scheme: First proposed by Yang et al. [25], this scheme
appears to have similar property. However, the anonymous signature scheme
provides signer anonymity and does not have an intended receiver when the
signature is generated. We will provide an example in Section 7 to better
explain this difference.

Signcryption scheme [26]: This scheme, first proposed by Zheng in 1997, is
perhaps most similar to our proposed SS scheme. The signcryption scheme is
built from a clever combination of a secure encryption scheme and a secure
signature scheme, providing both confidentiality and non-repudiation. Many
extensions of the signcryption scheme have also been proposed (e.g., [2, 3, 18,
22, 23]5). Signcryption provides signature privacy by encrypting the message.
However, this is computationally expensive particularly for applications that
do not require message confidentiality. SS is a new approach to provide
signature privacy without encryption.

At first read, our proposed SS scheme might be confused with other previ-
ously published signature privacy-related signature schemes. However, if we refer
to the definition of SS scheme given in Definition 1, it is clear that:

– The undeniable signature scheme differs from the SS scheme since interactive
protocol between the signer and the verifier is required in the signature
verification algorithm.

– DVS and LVS schemes differ from the SS scheme since public provability
cannot be achieved.

– Convertible LVS scheme differs from the SS scheme since the converted sig-
nature is not related with the receiver in any way.

– The anonymous signature scheme differs from the SS scheme since the sig-
nature does not have an intended receiver when the signature is generated
whilst in our proposed SS scheme, an intended receiver is required at the
time of signature generation.

On the other hand, the signcryption scheme is most similar to our proposed SS
scheme if the public proving/verification algorithms are further defined.
5 The signcryption scheme of Libert and Quisquater [18] is shown to be insecure [24].

13

6 Comparison of Efficiency

Since the signature-privacy-related signature schemes presented in Section 5 –
with the exception of the signcryption scheme – have rather different function-
alities, we will restrict our comparison only to the signcryption scheme. Since
public proving/verification protocols were not defined in the original signcryp-
tion scheme, we assume that similar zero-knowledge proof techniques are applied
in order to facilitate our comparison. Note that both the general and anonymous
proofs are also possible in the signcryption scheme.

For completeness, we now describe briefly how the general and anonymous
proofs are possible in Zheng’s signcryption scheme. To prove the correctness of
signcryption, either the signer or the receiver has to compute and reveal the
following information (we use the same notation as the original paper).

– The signer, A, has to keep the random number, x, used in the signcryption
secret. A has to compute and reveal yx

b and gx (requires 1 extra E). In this

case, the public verifier has to check whether gx ?= grsys
a holds (requires 2E).

– The receiver, B, has to compute and reveal gx = grsys
a and yx

b = (gx)xb

(requires 3E).

Now, using the general proof protocol, the signer can then prove ZKP (x) :
(logg gx = logyb

yx
b = x) and the receiver can prove ZKP (xb) : (logg yb =

loggx yx
b = xb), which requires 2E for proof and 4E for verification. Anonymous

proof is also possible for the 〈g, gx, yb, y
x
b 〉 tuple, which requires 6E for proof and

8E for verification.
Some of the computations required by the signer in our scheme can be per-

formed offline (i.e., before the message to be sent and the receiver are known),
such as U = grA , and hence, provides efficiency. In Table 1, we compare the
efficiency of our scheme with Zheng’s signcryption scheme. The notation used
in Table 1 is as follows: E and Eoff denotes online and offline modular expo-
nentiations, respectively; and ED denotes the cost for symmetric encryption or
decryption. For simplicity, we ignore modulo multiplication/division operations
and hash operations in our comparison.

Compared with Zheng’s signcryption, our proposed SS scheme is more effi-
cient both in the actual signature scheme and the public proving. Since the SS
scheme does not use symmetric encryption, it is more efficient than signcryp-
tion, especially with long message when message confidentiality is not required.
In public proving, the same zero-knowledge proofs can be used. In signcryption,
however, both the signer and receiver have to compute and reveal additional
information. All required information is already included in the generated sig-
nature in the SS scheme. Therefore, the SS scheme is more efficient than sign-
cryption when used in business transactions that do not require confidentiality
of messages.

14

Signcryption [26] Proposed SS scheme

Signing 1E + 1ED 1E + 1Eoff

Verification 2E + 1ED 3E

General proof Proof 3E 2E
by signer Verification 6E 4E

General proof Proof 5E 2E
by receiver Verification 4E 4E

Anonymous proof Proof 7E 6E
by signer Verification 10E 8E

Anonymous proof Proof 9E 6E
by receiver Verification 8E 8E

Public verification 1ED 2E

Table 1. Summary of efficiency analysis

7 Applications of Secret Signatures

The proposed SS scheme can be used as an important cryptographic primitive to
achieve business privacy, providing both signature privacy and public provability
of signature efficiently.

Secret signature is useful in many applications where (1) the privacy of gen-
erated signature needs to be maintained, but the authorship of the signature
can be publicly proven at a later stage, (2) message confidentiality is not very
important, and (3) efficiency is critical.

We now describe some possible application examples.

Application 1: Private Business Transaction

Let’s assume that two business entities, A and B, wanting to exchange some
not-so-confidential contract document, m (e.g., m can be constructed using open
source information). Although the contents of m do not need to be confidential,
both A and B do not want to reveal to other entities that they had signed m.
By using the proposed SS scheme, both A and B are assured that no third party
is aware that m has been signed. In the event that one of the entities violates a
non-cryptographic business rule, the other entity can prove the validity of their
private contract to a third party by opening the generated secret signature. The
public provability property guarantees the fairness of private business.

Application 2: Public Auction

We consider an application is a public auction (or English auction) setting
where bidding prices are published and the bidders are allowed to bid prices
anonymously as frequently as desired. When the winner is finally decided, the
anonymity of the winning bid is revealed and the correctness of the winning bid

15

should be proven publicly (to provide public verifiability). This is a typical ex-
ample where message confidentiality is not required, but signature privacy and
public provability are required.

To provide the anonymity of bid with public provability, we can use the
proposed SS scheme. In the bidding stage, bidders bid their prices using a secret
signature with the auctioneer as a receiver. For example, let A be the auctioneer,
Bi be bidders, and pj be the bidding prices. Bidder Bi computes

si,j = SS.Sign(params, pj , skBi
, pkA), ki,j = EpkA

(Bi),

and posts 〈pj , si,j , ki,j〉 on the bulletin board, where ki,j is an encrypted ID
information of the bidder (can be decrypted only by the auctioneer). In the
winner announcement stage, the auctioneer opens the highest price bid and
proves the correctness of secret signature. Any misbehavior of the auctioneer or
bidders can be proven publicly. Note that bidder anonymity was achieved easily
without using any encryption. Also note that threshold cryptography can be
used by the auctioneer such that pkA is distributed to multiple auctioneers and
bidder information of the losing bids is kept secret.

Application 3: Paper Submission System

Consider a paper submission system for a conference. In this case submitted
papers should be anonymous while they need not be encrypted. Authors need
to commit the following facts to the program chair with a signature; (1) the
submitted paper is their authentic work, (2) the submitted paper is not submit-
ted in parallel to another conference or journal, (3) the authors will present the
paper if accepted, and etc. Upon receiving the submission, the program chair
has to issue a receipt for the submitted paper to the author.

In such an application, the authors and the conference program chair can ex-
change secret signatures with the other entity as a receiver (or publish the secret
signature on the bulletin board as a public commitment). If general signatures
are exchanged, anonymity will be broken (since anyone can verify the authorship
of the submitted paper using the respective public keys). In the unlikely event
of a dispute between the program chair and an author at a later stage, it can be
resolved easily by using the public proving feature of secret signature.

One may note that the generated secret signature is tightly bound to the
recipient, the program chair of the conference. Hence, the same signature can-
not be submitted to another recipient, the program chair of another conference.
Therefore, if it was subsequently discovered that the same paper with two differ-
ent signatures was submitted to two different conferences in parallel, the author
cannot repudiate his misbehavior. However, this is not the case for Yang et al.’s
[25] anonymous signature scheme; the generated signature is not bound to any
recipient. The signer is able to repudiate that someone other than the signer has
forwarded the signature and the paper to the program chair of another confer-
ence without the signer’s knowledge.

16

8 Conclusion

We had discussed the signature privacy issue and introduced a new signature
variant, which we termed secret signature (SS). The SS scheme provides sig-
nature privacy and public provability of signature in an efficient manner by
combining secure signature schemes and non-interactive one-way key agreement
schemes. Although this is a very simple concept, it is a useful and efficient cryp-
tographic tool to achieve business privacy.

We then presented a concrete implementation example of secret signature in
discrete logarithm-based cryptosystems. Future extension of this work includes
implementing the SS scheme in other cryptosystems such as RSA-based and
pairing-based cryptosystems.

9 Acknowledgement

The second author would like to thank Sherman SM Chow for pointing out
references [10] and [17].

References

1. S. Araki, S. Uehara, and K. Imamura. The Limited Verifier Signature and its
Applications. IEICE Transactions, E82-A(1):63–68, 1999.

2. J. Baek, R. Steinfeld, and Y. Zheng. One-time Verifier-based Encrypted Key Ex-
change. In PKC 2002, volume 2274/2002 of LNCS, pages 80–98. Springer-Verlag,
2002.

3. F. Bao and R. H. Deng. A Signcryption Scheme with Signature Directly Verifiable
by Public Key. In PKC 1998, volume 1431/1998 of LNCS, pages 55–59. Springer-
Verlag, 1998.

4. M. Bellare and P. Rogaway. Random Oracles Are Practical: A Paradigm For
Designing Efficient Protocols. In ACM CCS 1993, pages 62–73. ACM Press, 1993.

5. D. Chaum. Undeniable Signatures. In EUROCRYPT 1994, volume 950/1995 of
LNCS, pages 86–91. Springer-Verlag, 1994.

6. D. Chaum. Private Signature and Proof Systems. United States Patent 5,493,614,
1996.

7. D. Chaum and T. P. Pedersen. Wallet Databases with Observers. In CRYPTO
1992, volume 740/1993 of LNCS, pages 89–105. Springer-Verlag, 1992.

8. D. Chaum and H. van Antwerpen. Undeniable Signatures. In CRYPTO 1989,
volume 435/1990 of LNCS, pages 212–216. Springer-Verlag, 1990.

9. X. Chen, F. Zhang, and K. Kim. Limited Verifier Signature Scheme from Bilinear
Pairings. In ACNS 2004, volume 3089/2004 of LNCS, pages 135–148. Springer-
Verlag, 2004.

10. S.S.M. Chow, S.M. Yiu, L.C.K. Hui, and K.P. Chow. Efficient Forward and Prov-
ably Secure ID-Based Signcryption Scheme with Public Verifiability and Public
Ciphertext Authenticity. In ICISC 2003, volume 2971/2003 of LNCS, pages 352–
369. Springer-Verlag, 2003.

11. W. Diffie and M. Hellman. Multiuser Cryptographic Techniques. In AFIPS 1976
National Computer Conference, pages 109–112. AFIPS Press, 1976.

17

12. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. In CRYPTO 1986, volume 263/1987 of LNCS, pages 186–
194. Springer-Verlag, 1986.

13. S. D. Galbraith and W. Mao. Invisibility and Anonymity of Undeniable and Con-
firmer Signatures. In CT-RSA 2003, volume 2612/2003 of LNCS, pages 80–97.
Springer-Verlag, 2003.

14. S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Se-
cure Against Adaptive Chosen-Message Attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

15. M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs and Their
Applications. In EUROCRYPT 1996, volume 1070/1996 of LNCS, pages 321–331.
Springer-Verlag, 1996.

16. S.J. Kim, S.J. Park, and D.H. Won. Zero-Knowledge Nominative Signatures. pages
380–392, 1996.

17. C.K. Li, G. Yang, D.S. Wong, X.Deng, and S.S.M. Chow. An Efficient Signcryption
Scheme with Key Privacy. In EuroPKI 2007, volume 4582/2007 of LNCS, pages
78–93. Springer-Verlag, 2007.

18. B. Libert and J.-J. Quisquater. Efficient Signcryption with Key Privacy from Gap
Diffie-Hellman Groups. In PKC 2004, volume 2947/2004 of LNCS, pages 187–200.
Springer-Verlag, 2004.

19. H. Lipmaa, G. Wang, and Feng Bao. Designated Verifier Signature Schemes- At-
tacks, New Security Notions and a New Construction. In ICALP 2005, volume
1853/2000 of LNCS, pages 459–471. Springer-Verlag, 2005.

20. W. Mao. Modern Cryptography: Theory and Practice. Prentice Hall PTR, 25 July,
2003.

21. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. Journal of Cryptology, 13:361–396, 2000.

22. J.-B. Shin, K. Lee, and K. Shim. New DSA-Verifiable Signcryption Schemes. In
ICICS 2002, pages 35–47. Springer-Verlag, 2002.

23. R. Steinfeld and Y. Zheng. A Signcryption Scheme Based on Integer Factorization.
In ISW 2000, volume 1975/2002 of LNCS, pages 308–322. Springer-Verlag, 2000.

24. G. Yang, D. S. Wong, and X. Deng. Analysis and Improvement of a Signcryption
Scheme with Key Privacy. In ISC 2005, volume 3650/2005 of LNCS, pages 218–
232. Springer-Verlag, 2005.

25. G. Yang, D. S. Wong, X. Deng, and H. Wang. Anonymous Signature Schemes. In
PKC 2006, volume 3958/2006 of LNCS. Springer-Verlag, 2006.

26. Y. Zheng. Digital Signcryption or How to Achieve Cost (Signature & Encryption)
<< Cost (Signature) + Cost (Encryption). In CRYPTO 1997, volume 1294/1997
of LNCS, pages 165–1793. Springer-Verlag, 1997.

A Proving the Equality of Two Discrete Logarithms

Let α and β be two independent generators of order q in modular p. A prover
P tries to prove to a verifier V that two numbers a = αx and b = βx have the
same exponent without exposing x. We denote this proof as

ZKP (x) : (logα a = logβ b = x).

Based on the scheme by Chaum and Pedersen [7] and Fiat-Shamir’s heuristics
[12] the non-interactive proof can be done as follows.

18

ZKP (x) : (logα a = logβ b = x)

– Proof: Prover P randomly chooses t from Z∗q and computes c = αt and
d = βt. He computes h = H(α, β, a, b, c, d) and s = t + hx, then sends
(c, d, s) to the verifier. Proof requires two exponentiation operations.

– Verification: Verifier V first computes h = H(α, β, a, b, c, d). Then he checks
αs ?= cah and βs ?= dbh. Verification requires four exponentiation operations.

B OR Proving the Equality of Two Discrete Logarithms

Let α1, β1, α2, β2 be four independent generators of order q in modular p.
A prover P tries to prove to a verifier V that either logα1

a1 = logβ1
b1(= x1)

or logα2
a2 = logβ2

b2(= x2) holds using his knowledge of x1 or x2 without
exposing it. It is an OR combination of two proofs for the equality of two discrete
logarithms. We denote this proof as

ZKP (x1 ∨ x2) : (logα1
a1 = logβ1

b1 = x1) ∨ (logα2
a2 = logβ2

b2 = x2).

The prover knows either x1 or x2, but does not know them all. This proof can
be done as follows.

ZKP (x1 ∨ x2) : (logα1
a1 = logβ1

b1 = x1) ∨ (logα2
a2 = logβ2

b2 = x2)

– Proof: Assume that the prover P knows xb and does not know xb′ .
• Randomly chooses rb, sb′ , tb′ from Z∗q .
• Computes cb = αrb

b , db = βrb

b , cb′ = α
sb′
b′ a

tb′
b′ , db′ = β

sb′
b′ b

tb′
b′ (incurring six

exponentiation operations).
• Computes t = H(α1, β1, α2, β2, a1, b1, a2, b2, c1, d1, c2, d2).
• Computes tb = t−tb′ and sb = rb−tbxb, then sends (c1, d1, c2, d2, s1, t1, s2, t2).

– Verification: Verifier V checks
• c1

?= αs1
1 at1

1 , d1
?= βs1

1 bt1
1 , c2

?= αs2
2 at2

2 , d2
?= βs2

2 bt2
2 and

• t1 + t2
?= H(α1, β1, α2, β2, a1, b1, a2, b2, c1, d1, c2, d2).

