
Self-Certified Signatures

Byoungcheon Lee1 and Kwangjo Kim2

1 Joongbu University,
San 2-25, Majon-Ri, Chuboo-Meon, Kumsan-Gun, Chungnam, 312-702, Korea

sultan@joongbu.ac.kr
2 International Research center for Information Security (IRIS),

Information and Communications University (ICU),
58-4, Hwaam-dong, Yusong-gu, Daejeon, 305-732, Korea

kkj@icu.ac.kr

Abstract. A digital signature provides the authenticity of a signed mes-
sage with respect to a public key and a certificate provides the autho-
rization of a signer for a public key. Digital signature and certificate are
generated independently by different parties, but they are verified by the
same verifier who wants to verify the signature. In the point of a verifier,
verifying two independent digital signatures (a digital signature and the
corresponding certificate) is a burden.
In this paper we propose a new digital signature scheme called self-
certified signature. In this scheme a signer computes a temporary sign-
ing key with his long-term signing key and its certification information
together, and generates a signature on a message and certification in-
formation using the temporary signing key in a highly combined and
unforgeable manner. Then, a verifier verifies both signer’s signature on
the message and related certification information together. This approach
is very advantageous in efficiency. We extend the proposed self-certified
signature scheme to multi-certification signature in which multiple certi-
fication information are verified. We apply it to public key infrastructure
(PKI) and privilege management infrastructure (PMI) environments.

Keywords: digital signature, self-certified signature, self-certified key,
multi-certification signature, public key infrastructure, privilege man-
agement infrastructure

1 Introduction

1.1 Digital Signature and Certification

A digital signature is computed by a signer from a message and his signing key.
When the signature is verified to be valid with the corresponding public key,
it provides the authenticity of the signed message with respect to the public
key. But the signature is only linked to the public key and does not provide
the authorization of the signer by itself. To provide the authorization of the
signer for the public key, a certificate is used, which is signed by a trusted third
party. In X.509 [PKI], a certification authority (CA) can provide the signer with

a certificate which is a digital signature of CA on the public key and relevant
certification information such as serial number, identity of the signer, identity of
CA, period of validity, extensions, etc. In other words a certificate provides an
unforgeable and trusted link between a public key and a specific signer. Whenever
a verifier wants to use the public key to verify a signature, he first has to check
the validity of the certificate using CA’s public key.

Public key infrastructure (PKI) [PKI] is a hierarchical framework to issue and
manage certificates. It is also said that PKI is a trust management infrastructure.
It is a key infrastructure for the digital signature technology to be adapted in real
world. Recently, many countries over the world enact the digital signature act
which provides legal support to the validity of digital signature. Nowadays, PKI
industry is booming and digital signature technology is being adapted quickly
in our real life.

Digital signature and certificate are generated independently by different
parties, but they are verified by the same verifier who wants to verify the sig-
nature. In the point of a verifier, verifying two independent digital signatures
(a digital signature on a message and the corresponding certificate) is a bur-
den. Moreover the verifier has to locate and keep the corresponding certificate
by himself. Therefore more elegant and efficient approach for the verification of
digital signature and certificate is required.

To solve this problem, we propose a new digital signature scheme called self-
certified signature (SCS). In this scheme a signer computes a temporary signing
key with his long-term signing key and certification information together, and
generates a signature on a message and certification information using the tem-
porary signing key in a highly combined and unforgeable manner. Then, a verifier
verifies both signer’s signature on the message and related certification informa-
tion together. This approach has many advantages in efficiency (computation
and communication) and in real world usage.

Moreover, in PKI and PMI environment many additional certification infor-
mation need to be checked together, such as certificate revocation list (CRL),
certification path from the root CA to the signer, attribute certificates, etc. We
extend the SCS scheme to multi-certification signature (MCS) in which multiple
certification information are verified, and apply it to PKI and PMI environment.

1.2 Related Concepts

The concept of SCS has some similarity with identity-based cryptosystem, self-
certified key (SCK), and proxy signature scheme. These concepts commonly deal
with the issue how to certify public keys. The most familiar approach to certify
a public key is using explicit certificate such as X.509, but these concepts show
other possibilities to manage certification.

In identity-based scheme, first introduced by Shamir [Sha84], the public key
is nothing but the identity of the signer and the related secret key is computed
from some trapdoor originated by CA. This scheme is very attractive because it
needs no certificate and no verification of certificate, hence reduces the amount

of storage and computation, but it’s disadvantage is that the secret key is known
to CA.

The concept of self-certified key (SCK), introduced in [Gir91], is a sophisti-
cated combination of certificate-based and identity-based models. Using an RSA
cryptosystem a user chooses his secret key, computes his public key, and gives it
to the authority. Then the authority computes a certification parameter for the
user which satisfies a computationally unforgeable relationship with the public
key and the identity. A verifier can compute the public key from the identity
and the certification parameter. [PH97] extended [Gir91] to DLP-based cryp-
tosystem in which self-certified key is issued securely using weak blind Schnorr
signature protocol. A problem of SCK schemes is that it provides only implicit
authentication, i.e., the validity of a SCK is determined only after a success-
ful communication. [LK00] improved [PH97] such that explicit authentication of
SCK is provided by using the concept of self-certificate.

In the point of cryptographic primitives, SCS is similar to proxy signature
schemes [MUO96,PH97,KPW97,LKK01a,LKK01b]. Proxy signature is a signa-
ture scheme in which an original signer delegates her signing capability to a proxy
signer, and then the proxy signer creates a signature on behalf of the original
signer. From a proxy signature a verifier can check both original signer’s delega-
tion and proxy signer’s digital signature. The basic methodology used in proxy
signature scheme is that the original signer creates a signature on delegation
information (ID of the designated proxy signer, period of validity, specification
on message space, or any warrant information) and gives it secretly to the proxy
signer, and then the proxy signer uses it to generate a proxy key pair. From a
proxy signature computed by using the proxy signing key, any verifier can check
original signer’s delegation, because the proxy key pair is generated from original
signer’s signature on delegation information. In SCS scheme certification infor-
mation is used in a similar way as the delegation information in proxy signature
scheme.

More recently, proxy certificate profile was proposed in [PC]. Proxy certificate
can be used for entity A to give the delegation information to entity B in the
form of certificate. Then B can authenticate with others as if it were A.

These concepts commonly specify how to make key pair. SCK scheme is a
key issuing protocol with no specification on signing and verification, but SCS
scheme contains signing and verification algorithms together with key generation
algorithm. Proxy signature schemes [PH97,KPW97,LKK01a] specify signing and
verification algorithms, but they are signatures only on message. As will be
shown in later Section, there are possibilities of forgery if a proxy signature is a
signature only on message. Proxy signature schemes in [LKK01b] are signatures
on message and delegation information together, but detailed analysis was not
given. On the other hand, a SCS is a signature both on message and certification
information together such that a verifier can verify both the digital signature on
message and certification information in an efficient way. Since a SCS contains
certification information in a digital signature, it provides more concrete non-
repudiation evidence than a normal digital signature.

1.3 Our Contributions

To provide the authenticity of a digital signature and the authorization of a
public key together in an efficient way, we introduce a new digital signature
scheme called self-certified signature. In this approach the signer generates a
temporary signing key using his long-term signing key and CA’s certification
information together and signs a message and certification information using
this temporary signing key. In the verification stage both the signature on the
message and certification information are checked together.

We extend the proposed SCS scheme to multi-certification signature (MCS)
in which multiple certification information are verified. We apply MCS scheme to
public key infrastructure (PKI) and privilege management infrastructure (PMI)
environments in which many additional certification information, such as cer-
tificate revocation list (CRL), path validation from the root CA to the signer,
attribute certificate (AC), etc, have to be verified. A signer can collect all the
certification information required to verify the authorization for his public key
and compute a MCS. Then it provides more concrete non-repudiation evidence
than a normal digital signature. In the point of a verifier, he doesn’t need to
locate all the required certification information by himself.

The paper is organized as follows: In Section 2 we define SCS scheme and
show a general implementation of SCS based on DLP. We also show a distin-
guished implementation of SCS and discuss its security. In Section 3 we extend
the proposed SCS scheme to MCS and apply it to PKI and PMI environments
in which many additional certification information have to be verified. We com-
pare the efficiency of MCS scheme with a general multiple signature approach.
Finally, we conclude in Section 4.

2 Self-Certified Signature

Assume that a signer S has a long-term key pair (x0, y0) where x0 is a secret
signing key and y0 is the corresponding public key. The public key y0 is certi-
fied by a certification authority CA with a certificate Certs. CA issues Certs
as a certificate for the public key y0 and the signer S by signing a certification
information CIs prepared by himself. According to X.509, CIs can include infor-
mation such as serial number, signer’s identity, issuer’s identity, public key y0,
period of validity, extensions, etc. To sign a message using SCS scheme, the signer
S computes a temporary key pair (x, y) using his long-term key pair (x0, y0) and
the certificate Certs.

The basic idea of the proposed SCS scheme is as follows.

1. A signer S computes a temporary signing key x for SCS using his long-term
signing key x0 and certificate Certs such that it can be computed only by
himself.

2. S signs a message and related certification information using the temporary
signing key x to generate a self-certified signature σ.

3. A verifier V computes the temporary public key y from signer’s long-term
public key y0 and certification information, and verifies the self-certified sig-
nature σ using y.

The resulting SCS is a combination of general signature scheme and certification
scheme, therefore it should satisfy the non-repudiation requirement of general
signature scheme and certification requirement of certification scheme.

In this paper we use the following notation.

– S: a signer
– V: a verifier
– CA: a certification authority
– (x0, y0): signer’s long-term key pair (secret signing key, public key)
– (x, y): signer’s temporary key pair for SCS
– CIs: certification information, prepared by CA, for the public key y0 and the

signer S
– Certs: a certificate, issued by CA, for the public key y0 and the signer S
– Sx(m): a signing algorithm on message m using a signing key x
– Vy(s,m): a verification algorithm of a signature s using a public key y
– Sx(m1,m2): a two-message signing algorithm on messages m1 and m2 using

a signing key x
– Vy(s,m1,m2): a two-message verification algorithm of a signature s on mes-

sages m1 and m2 using a public key y
– h(), h1(), h2(): collision resistant hash functions
– m: a message
– σ: a self-certified signature

2.1 Definition of SCS

First, we need to consider how to sign two messages together.

Definition 1 (Two-message signature). Let m1 and m2 be two messages
that a signer S wants to sign together. Let Sx(m) be a signing algorithm which is
a signature on message m using a signing key x. Then two-message signature is a
signature on two messages m1 and m2 together and we denote it as Sx(m1,m2),
where m1 and m2 are called the first and second message.

The most general approach of two-message signature is to prepare a new
message by concatenating two messages as m = (m1||m2) and then sign m using
a general signature scheme. But there can be numerous modifications. We will
show an example in later Section. Now we define self-certified signature.

Definition 2 (Self-certified signature). Let (x0, y0) be a signer’s long-term
key pair where x0 and y0 are a secret signing key and the corresponding public
key, respectively. Let Certs be a certificate for the public key y0 issued by CA.
Self-certified signature scheme consists of the following three algorithms.

1. Key generation algorithm takes the long-term key pair (x0, y0) and cer-
tificate Certs and outputs a temporary key pair (x, y)

x = f(x0, Certs), y = g(y0, Certs)

where f, g are public algorithms.
2. Signing algorithm is a probabilistic algorithm which takes a message m,

a certificate Certs, and the temporary signing key x as input and outputs
a self-certified signature σ = Sx(m, Certs) using the two-message signature
scheme where the first message is m and the second message is Certs.

3. Verification algorithm takes a self-certified signature σ, a message m, a
certificate Certs, a long-term public key y0 as input and outputs a binary
value 0 (invalid) or 1 (valid). It is a three-step algorithm.
– It computes the temporary public key y = g(y0, Certs),
– It verifies the self-certified signature using y, Vy(σ,m, Certs)

?= 1.
– It checks whether y0 is stated in Certs correctly (This is just a document

test, not a signature verification).

If all the verifications hold, it represents that the signature of the signer on
message m is valid and certification by CA is also confirmed. If the document
test of Certs is not valid, the self-certified signature is considered to be invalid,
although the signature verification was passed.

Self-certified signature scheme should satisfy the following security require-
ments.

1. Non-repudiation: The self-certified signature should be generated only by
the signer S who knows the long-term signing key x0. Therefore the signer
should not be able to repudiate his signature creation later.

2. Certification: From the self-certified signature a verifier should be con-
vinced that the signer S is authorized to use the public key y0 by the trusted
authority CA.

2.2 Attack Models against SCS

The most powerful attack model on digital signature scheme is the adaptively
chosen message attack [PS00] in which an adversary is allowed to access the
signing oracle as many times as she wants and get valid signatures for messages
of her choice. In SCS scheme the attacker is more advantageous since she has
additional knowledge of certification information. There is also possibility for the
signer to misuse the temporary signing key. We consider the following additional
attack scenarios.

1. Forgery using partial information (by third party): In SCS scheme
partial information of the temporary signing key x is known to third par-
ties, i.e., the certification information Certs is published (but the long-term
signing key x0 is kept secret). Moreover the algebraic relationship between

x and x0 is publicly known. The long-term signing key x0 can be used to
generate normal signatures, while the temporary signing key x is used to
generate SCS. If the SCS scheme is not secure, an active attacker can try to
change the certification information, induce a valid normal signature from
a valid SCS, or induce a valid SCS from a valid normal signature. For the
SCS scheme to be secure, this partial information should be of no help for
any malicious third party to forge a valid signature.

2. Key generation stage attack (by signer): In SCS scheme the signer
computes the temporary signing key x by himself. A malicious signer can
try to use it for another malicious purpose. For example, he can get a certifi-
cate for (x, y) from another CA without exposing the previous certification
information and use it for malicious purpose. He can show the previous cer-
tification information later when it is necessary. For the SCS scheme to be
secure, this kind of malicious usage of the temporary key pair should be
prevented and detected easily.

These attacks can work in proxy signature schemes [PH97,KPW97,LKK01a]
also if it is a signature only on message.

2.3 General Implementation of SCS based on DLP

The SCS scheme can be implemented easily using the DLP-based cryptosystem
if system parameters are shared among signer’s key pair and CA’s key pair. We
consider the Schnorr signature scheme as an underlying signature scheme.

Firstly, we review Schnorr signature scheme briefly. Let p and q be large
primes with q|p−1. Let g be a generator of a multiplicative subgroup of Z∗p with
order q. h() denotes a collision resistant cryptographic hash function. Assume
that a signer has a secret signing key x and the corresponding public key y =
gx mod p. To sign a message m, the signer chooses a random number k ∈R Z∗q
and computes r = gk, s = x · h(m, r) + k. Then the tuple (r, s) becomes a valid
signature on message m. The validity of signature is verified by gs ?= yh(m,r)r.
Note that the signing process requires one offline modular exponentiation and
the verification of signature requires two online modular exponentiations. This
signature scheme has been proven to be secure under the random oracle model
[PS96,PS00]. They have shown that existential forgery under the adaptively
chosen message attack is equivalent to the solution of discrete logarithm problem.

We assume that a signer S has a long-term key pair (x0, y0) where y0 =
gx0 mod p. He also has a certificate Certs on the public key y0 issued by CA.
We also assume that the same system parameters p and q are shared among
signer’s key pair and CA’s key pair. Let (xCA, yCA) be CA’s key pair where
yCA = gxCA . The certificate Certs = (rc, sc) on public key y0 is CA’s Schnorr
signature on some certification information CIs prepared by CA, which includes
serial number, long-term public key y0, signer’s identity, issuer’s identity, period
of validity, extensions, etc. To issue Certs CA chooses kc ∈R Z∗q and computes

Certs = (rc, sc) = (gkc , xCA · h(CIs, rc) + kc).

It’s validity is verified by gsc
?= y

h(CIs,rc)
CA rc. CA has issued Certs = (rc, sc) to S

as a certificate for the public key y0.
Now the self-certified signature scheme on a message m and a certificate

Certs is given by the following three algorithms.

General Implementation of SCS:

1. Key generation: A signer S computes a temporary key pair (x, y) by using
the long-term key pair (x0, y0) and the certificate Certs as

x = x0 + sc, y = y0y
h(CIs,rc)
CA rc.

2. Signing: Using the temporary signing key x, S computes a self-certified
signature σ = (r, s) on message m and certificate Certs as follows.
– Prepare a concatenated message m||CIs||rc.
– Chooses a random number k ∈R Z∗q and computes a signature as

r = gk, s = x · h(m||CIs||rc, r) + k.

– Gives {(r, s), CIs, rc} as a SCS on message m.
3. Verification: A verifier V checks the validity of {(r, s), CIs, rc} as follows.

– Computes a temporary public key y = y0y
h(CIs,rc)
CA rc.

– Verifies the signature (r, s) using y by gs ?= yh(m||CIs||rc,r)r.
– Checks whether y0 is stated in CIs correctly (This is just a document

test, not a signature verification).

If the verification holds, it means that the signature of the signer on message
m is valid and certification by CA is also confirmed. If the document test of Certs
is not valid, the self-certified signature is considered to be invalid, although the
signature verification was passed. Therefore the signer should construct a valid
temporary key pair using correct certification information.

Because the underlying Schnorr signature scheme is secure, the proposed SCS
scheme satisfies the security requirements listed above.

1. Non-repudiation: Since the Schnorr signature scheme is a secure signature
scheme, any other party who does not know the temporary signing key x can-
not forge a valid Schnorr signature on two messages m and Certs. Therefore
the signer cannot repudiate his signature creation later.

2. Certification: Since the Schnorr signature (r, s) is verified by using the tem-
porary public key y = y0y

h(CIs,rc)
CA rc, a verifier is convinced that the signer

was authorized to use the public key y0 by CA.

Note that {(r, s), CIs, rc} is a signature on a combined message m||CIs||rc

(instead of just m) with a temporary signing key x = x0 + sc. This prevents
additional attacks proposed above.

1. Forgery using partial information (by third party): Third party cannot ma-
nipulate a valid SCS to generate a new valid SCS (modifying certification
information) or a normal signature (deleting certification information), al-
though he knows additional information sc.

2. Key generation stage attack (by signer): A malicious signer cannot try to
hide the certification information on purpose and expose it later. He can get
a new certificate for x = x0 + sc from other CA and use it as a new certified
key. But when he exposes the hidden certification, it is not accepted since
certification information should be included explicitly in message.

Since a SCS includes both a signature on message and certification, it pro-
vides more concrete non-repudiation evidence than a normal signature. For ex-
ample, assume that a normal signature is verified to be valid, but the correspond-
ing certificate is turned out to be invalid, then the signature is not qualified. But
a valid SCS is qualified by itself. A complete non-repudiation evidence is pro-
vided in SCS scheme if the signer had computed it correctly, while only partial
non-repudiation evidence is provided in normal signature schemes.

In the point of communication, a verifier does not need to locate and keep
the certification information by himself because it is already included in a SCS.
In the point of computation, SCS is more efficient than the general approach of
independent signature verification. Detailed efficiency analysis will be given in
Section 3.

2.4 Comparison with Self-Certified Key

The proposed SCS scheme can be compared with the self-certified key (SCK)
scheme as follows.

First, SCK scheme is a key issuing protocol and it does not specify how to
sign a message using the self-certified key. On the other hand, SCS scheme does
not specify how to certify a public key, but specifies how to sign a message and
verify a signature using a long-term key pair and the corresponding certificate
together. Therefore in SCS scheme already wide-spread PKI environment can be
used without any change. SCS can be considered as signer’s additional service to
provide more concrete non-repudiation evidence and more efficient verification
of signature. As will be shown later, efficiency is provided mainly in verification
stage, not in signing stage.

Second, SCK scheme provides only implicit authentication. Since any kind
of certificate is not used explicitly, the authenticity of a public key is guaranteed
only when it is used successfully in application. On the other hand, SCS scheme
provides explicit authentication since certificate in PKI environment is used.
Only difference is that the certificate is used in highly combined manner with
the signature in the signing and verification algorithms.

2.5 Distinguished Implementation of SCS

If the same digital signature scheme (for example, Schnorr signature) is used
both as a normal signature scheme and a SCS scheme, then some argument

can happen. The SCS (r, s) generated above can also be considered as a normal
signature on message m||CIs||rc using a new signing key x. Anyone can launch
the following attacks using the public information sc.

– If the signer signs a message something like m||CIs||rc using his long-term
signing key x0, anyone can compute a valid SCS by adding the certification
component.

– If the signer generates a SCS on m||CIs||rc as above, anyone can compute a
normal signature on m||CIs||rc by deleting the certification component.

The resulting forgery can be considered not so risky in real world, but the signer
should be careful not to sign any maliciously formed message. Although the
SCS scheme is secure in cryptographic sense, this kind of argument needs to
be removed. Therefore normal signature scheme and SCS scheme need to be
implemented in distinguished ways.

The first natural approach in designing SCS scheme is to use the message
and certification information in distinguished way in the signing algorithm. First,
we introduce a distinguished two-message signature scheme in which two mes-
sages are used in different hash functions. It is a slight modification of Schnorr
signature scheme.

Distinguished two-message signature scheme: Let m1 and m2 be two mes-
sages to be signed. Let (x, y) be signer’s key pair.

1. Signing algorithm: A signer chooses a random number k ∈R Z∗q and com-
putes a signature as

r = gk, s = x · h1(m1, r) + k · h2(m2, r)

where h1() and h2() are cryptographic hash functions. Note that the first
and the second messages are used in h1() and h2(), respectively.

2. Verification algorithm: A verifier verifies the signature (r, s) as

gs ?= yh1(m1,r)rh2(m2,r).

We consider the security of the distinguished two-message signature scheme.
It can be proven that the distinguished two-message signature scheme is secure
under an adaptively chosen-message attack.

Theorem 1. Consider an adaptively chosen message attack in the random ora-
cle model against the distinguished two-message signature scheme. Probabilities
are taken over random tapes, random oracles and public keys. If an existential
forgery of this scheme has non-negligible probability of success, then the discrete
logarithm problem can be solved in polynomial time.

Proof. The signer can be simulated by a simulator (who does not know the secret
key) with an indistinguishable distribution. We denote the signature scheme as

r = gk, s = x · e1 + k · e2

where e1 = h1(m1, r) and e2 = h2(m2, r). A simulator who does not know secret
key x can choose s, e1, e2 ∈R Zq and compute r = gs/e2y−e1/e2 . Then, (r, s)
computed by the simulator is indistinguishable from signer’s signature. Then the
attacker and the simulator can collude in order to break the signature scheme,
and we can solve the discrete logarithm. Assume that an existential forgery of
this scheme has non-negligible probability of success. Using the Forking lemma
[PS96,PS00], we get two valid signatures (r, s, e1, e2) and (r, s′, e′1, e

′
2) such that

gs = ye1re2 and gs′ = ye′1re′2 . Then, from

gs/e2y−e1/e2 = gs′/e′2y−e′1/e′2

the signing key x can be computed as

x = (s/e2 − s′/e′2)/(e1/e2 − e′1/e′2).

ut
Now, we implement a SCS scheme using the distinguished two-message sig-

nature scheme and call it a distinguished implementation. In this scheme the
first message is the message to be signed and the second message is certifica-
tion information for the public key. In this implementation the key generation
algorithm is the same, but signing and verification algorithms are modified as
follows.

Distinguished Implementation of SCS:

1. Key generation: same as the general implementation of SCS.
2. Signing: Chooses a random number k ∈R Z∗q and computes a signature as

r = gk, s = x · h1(m, r) + k · h2(CIs||rc, r).

3. Verification: Verifies the signature (r, s) using y by

gs ?= yh1(m,r)rh2(CIs||rc,r).

Note that message m is used in the first hash function and certification infor-
mation CIs||rc is used in the second hash function. Compared with the general
implementation, this modification requires one more online exponentiation in
verification.

Since the distinguished two-message signature scheme is a secure signature
scheme, distinguished implementation of SCS also satisfies non-repudiation and
certification requirements.

3 Multi-Certification Signature and PKI

3.1 PKI and PMI Environments

A digital signature provides the authenticity of a signed message with respect
to a public key and a certificate issued by a trusted authority provides the

authorization of a signer for a public key. Whenever a verifier wants to use the
public key to verify a signature, he first has to check the validity of the certificate
using CA’s public key. The next question is whether the verifier trusts signer’s
CA or not, or how to manage the trust relationship between a signer and a
verifier. Public key infrastructure (PKI) [PKI] is a hierarchical framework to
issue and manage certificates. It is also said that PKI is a trust management
infrastructure.

As the trust relationship between a signer and a verifier becomes complex in
PKI environment, the verifier should check not only the certificate of the signer,
but also various extra certification information related with the certificate.

– He has to check CRL [CRL] to check whether the signer’s certificate was
revoked or not.

– He has to check certification path from signer’s CA to the root CA who
is trusted by himself (Check certificates and CRLs of CAs located in the
middle of the certification path).

Recently, attribute certificate (AC) and PMI [PMI] are becoming an issue.
Since the the public key certificate (PKC) provide authentication only for the
key pair and is used for relatively long period of time, it is not suitable to authen-
ticate short-term attributes of signer (such as access control, role, authorization,
etc.) which are used for short period of time. For these applications attribute
authority (AA) issues AC to a signer to certify signer’s specific attribute. PMI
is an infrastructure to manage ACs while PKI is an infrastructure to manage
PKCs.

AC does not use an independent key pair, but has a link to a PKC, therefore
same key pair is shared among PKC and AC. When a signer signs a message
with the key pair and asserts both certifications of PKC and AC, a verifier has
to verify both certifications.

– He has to verify certifications related with AC, if it is asserted by the signer.

Therefore, in the point of a verifier the verification process of a digital sig-
nature is a burden and he should be very careful to check every required certifi-
cations.

The proposed SCS scheme can be extended to multi-certification situation
easily in which multiple certification information should be verified. In this Sec-
tion we introduce multi-certification signature (MCS) and apply it to PKI and
PMI environments.

3.2 Multi-Certification Signature

Multi-certification signature (MCS) scheme is a generalization of the self-certified
signature scheme in which multiple certification information are verified together.

Definition 3 (Multi-Certification Signatures). Multi-certification signature
is a self-certified signature in which multiple certification information are used.

Let (x0, y0) be signer’s long-term key pair. Let (c1, . . . , cn) be n certification infor-
mation related with y0, which can be PKCs, CRLs, ACs, etc. Multi-certification
signature scheme consists of the following three algorithms.

1. Key generation algorithm takes the long-term key pair (x0, y0) and n
certification information (c1, . . . , cn) and outputs a temporary key pair (x, y)

x = f(x0, c1, . . . , cn), y = g(y0, c1, . . . , cn)

where f, g are public algorithms.
2. Signing algorithm is a probabilistic algorithm which takes a message m,

n certification information (c1, . . . , cn), and the temporary signing key x as
input and outputs a multi-certification signature σ = Sx(m, c1, . . . , cn) us-
ing the two-message signature scheme where the first message is m and the
second message is (c1, . . . , cn).

3. Verification algorithm takes a multi-certification signature σ, a message
m, n certification information (c1, . . . , cn), the long-term public key y0 as
input and outputs a binary value 0 (invalid) or 1 (valid). It is a three-step
algorithm.
– It computes the temporary public key y = g(y0, c1, . . . , cn),

– It verifies the multi-certification signature using y, Vy(σ,m, c1, . . . , cn) ?=
1.

– It checks whether (c1, . . . , cn) are valid (This is just a document test, not
a signature verification).

Now consider a general implementation of MCS based on DLP cryptosystem.
We assume that a signer S has a certified key pair (x0, y0) where y0 = gx0 and n
certification information (c1, c2, . . . , cn) related with it. ci can be PKCs, CRLs,
ACs, etc, which are all represented by digital signatures. Here we assume that
the same system parameters p and q are shared among signer’s key pair and n
certification information.

The certification information ci are digital signatures on some certification
messages CIi related with the key pair (x0, y0) in any form and are provided by
authorities Ai. Let (xi, yi) be Ai’s key pair where yi = gxi . Then ci is a Schnorr
signature of the authority Ai on certification message CIi. To generate ci, Ai

chooses ki ∈R Z∗q and computes

ci = (ri, si) = (gki , xi · h(CIi, ri) + ki).

It’s validity can be verified by gsi
?= y

h(CIi,ri)
i ri. Ai has issued (ri, si) as a

certification information.
The MCS scheme is given by the following three algorithms.

General Implementation of MCS:

1. Key generation: A signer S computes a temporary signing key pair (x, y)
by using the long-term key pair (x0, y0) and n certification information
(c1, . . . , cn) as

x = x0 + s1 + s2 + · · ·+ sn,

y = y0y
h(CI1,r1)
1 r1 · · · yh(CIn,rn)

n rn.

2. Signing: Using the temporary signing key x the signer S computes a multi-
certification signature σ = (r, s) on message m and certification information
(CI1, r1, . . . , CIn, rn) as follows.
– Prepare a concatenated message m||CI1||r1|| · · · ||CIn||rn.
– Chooses a random number k ∈R Z∗q and computes a signature as

r = gk, s = x · h(m||CI1||r1|| · · · ||CIn||rn, r) + k.

– Gives {(r, s), CI1||r1|| · · · ||CIn||rn} as a MCS on message m.
3. Verification: A verifier V checks the validity of {(r, s), CI1||r1|| · · · ||CIn||rn}

as follows.
– Computes a temporary public key y = y0y

h(CI1,r1)
1 r1 · · · yh(CIn,rn)

n rn.

– Verifies the signature (r, s) using y by gs ?= yh(m||CI1||r1||···||CIn||rn,r)r.
– Checks the certification information stated in (CI1, . . . , CIn) (This is

just a document test, not a signature verification).

If the verification holds, it means that the signature of the signer is valid and
n certification information are also confirmed. We can consider the distinguished
implementation of MCS in the same way.

3.3 Efficiency

To compare the efficiency of the proposed MCS scheme, we consider a general
approach that the signer just generates a signature on message m with his signing
key x0, and then the verifier has to verify n + 1 signatures (a signature of the
signer and n certification information) independently. We show the comparison
result in Table 1.

In the point of computation the general approach requires 1 signature gener-
ation (1 offline exponentiation) and n+1 signature verifications (2(n+1) online
exponentiations), while the general implementation of MCS scheme requires 1
signature generation (1 offline exponentiation) and 1 signature verification to-
gether with n exponentiations (n + 2 online exponentiations). In distinguished
implementation of MCS scheme n + 3 online exponentiations are required in
verification. On average the proposed MCS schemes are about 50% more effi-
cient than the general approach. Note that computational efficiency is provided
mainly in verification stage, not in signing stage.

If we consider a special case that n certification information are somewhat
fixed and the verifier can verify them all in advance, then the verifier in MCS
scheme also can compute the temporary public key y in advance and can use

it repeatedly. Then the amount of computation in MCS scheme and in general
approach are the same.

In signature size general approach uses n + 1 independent signatures ((n +
1)(|p| + |q|)) while the proposed MCS schemes require a single signature and
(r1, . . . , rn) ((n + 1)|p| + |q|). (Note that if the signer sends certificates them-
selves as certification information to the verifier, communication size will not be
changed.) Therefore MCS scheme is more efficient than the general approach in
computation and communication.

Table 1. Comparison of the efficiency of MCS schemes in computation and communi-
cation.

General General Distinguished
Process approach implementation implementation

of MCS of MCS

No. of Exp. in signing 1 (offline) 1 (offline) 1 (offline)

No. of Exp. in verification 2(n + 1) (online) n + 2 (online) n + 3 (online)

Signature size (n + 1)(|p|+ |q|) (n + 1)|p|+ |q| (n + 1)|p|+ |q|

We can consider another efficiency point. In MCS scheme a signer collects
all the relevant certification information and provides a verifier with a highly
combined digital signature with which both the digital signature on message
and all certification information are verified together. If the signature cannot
pass the verification process because of wrong certification information, it will
not be considered as a valid signature. Therefore, a signer has to provide all
the correct certification information and a verifier does not need to locate and
keep them by himself. MCS can be considered as signer’s additional service to
provide more concrete non-repudiation evidence and more efficient verification
of signature.

4 Conclusion

In this paper we have considered the real situation of using digital signatures in
PKI and PMI environments and derived the necessity of new digital signature
schemes called self-certified signature and multi-certification signature. First, we
have shown the necessity of signing a message with a long-term signing key
and certification information related with the public key together, and proposed
the self-certified signature scheme. Then we have considered the PKI and PMI
environments and extended SCS to multi-certification signature scheme in which
multiple certification information have to be verified together. The proposed
schemes turned out to be very efficient in real usage.

In this paper we have implemented SCS and MCS schemes in DLP-based
cryptosystems. However, RSA signature schemes are also widely used in practice.

Therefore designing RSA-based SCS scheme is an attractive further work. It
is also required to provide more concrete security notions and proofs on SCS
schemes.

Acknowledgements

We would like to thank anonymous reviewers for their valuable comments, which
help to make this paper more readable one.

References

[CRL] RFC 2459, Internet X.509 Public Key Infrastructure Certificate and CRL Pro-
file, IETF, 1999, http://www.ietf.org/html.charters/pkix-charter.html

[Gir91] M. Girault, “Self-certified public keys”, Advances in Cryptology: Eurocrypt’91,
LNCS 547, Springer-Verlag, 1991, pages 490 - 497.

[KPW97] S. Kim, S. Park, and D. Won, “Proxy signatures, revisited”, In Proc. of
ICICS’97, International Conference on Information and Communications Security,
Springer, Lecture Notes in Computer Science, LNCS 1334, pages 223-232, 1997.

[MUO96] M. Mambo, K. Usuda, and E. Okamoto, “Proxy signatures: Delegation of
the power to sign messages”, In IEICE Trans. Fundamentals, Vol. E79-A, No. 9,
Sep., pages 1338–1353, 1996.

[LK00] B. Lee and K. Kim, “Self-Certificate: PKI using Self-Certified Key”, Proc. of
Conference on Information Security and Cryptology 2000, Vol. 10, No. 1, pages
65–73, 2000.

[LKK01a] B. Lee, H. Kim and K. Kim, “Strong Proxy Signature and its Applications”,
Proc. of SCIS2001, pages 603–608, 2001.

[LKK01b] B. Lee, H. Kim and K. Kim, “Secure Mobile Agent using Strong Non-
designated Proxy Signature”, Proc. of ACISP2001, LNCS Vol.2119, Springer-Verlag,
pages 474–486, 2001.

[PC] S. Tuecke, et. al., “Internet X.509 Public Key Infrastructure Proxy Certificate
Profile”, IETF, 2002.

[PH97] H. Petersen and P. Horster, “Self-certified keys – Concepts and Applications”,
In Proc. Communications and Multimedia Security’97, pages 102 - 116, Chapman
& Hall, 1997.

[PKI] Public-Key Infrastructure (X.509) (pkix), http://www.ietf.org/html.charters/pkix-
charter.html

[PMI] Request for Comments, An Internet Attribute Certificate Profile for Authoriza-
tion (RFC 3281), IETF, 2002.

[PS96] D. Pointcheval and J. Stern, “Security Proofs for Signatures”, Advances in
Cryptology: Eurocrypt’96, pages 387 - 398, Springer, 1996.

[PS00] D. Pointcheval and J. Stern, “Security arguments for digital signatures and
blind signatures”, Journal of Cryptology, Vol. 13, No. 3, pages 361 - 396, Springer-
Verlag, 2000.

[Sha84] A. Shamir, “Identity-based cryptosystems and signature schemes”, Advances
in Cryptology: Crypto’84, LNCS 196, Springer-Verlag, pages 47 - 53, 1985.

