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Abstract. A new solution to the millionaire problem is designed on
the base of two new techniques: zero test and batch equation. Zero test
is a technique used to test whether one or more ciphertext contains a
zero without revealing other information. Batch equation is a technique
used to test equality of multiple integers. Combination of these two tech-
niques produces the only known solution to the millionaire problem that
is correct, private, publicly verifiable and efficient at the same time.
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1 Introduction

In the millionaire problem, two millionaires want to compare their richness with-
out revealing their wealth. This problem can be formulated as a comparison of
two ciphertexts without decrypting them. Many solutions to the millionaire prob-
lem [3, 6, 8, 9, 10, 13, 16, 15, 24, 19, 20, 4, 5, 31, 12, 2] have been proposed. However,
none of them are both verifiable and efficient.

In this paper, a new solution to the millionaire problem is proposed. This
new solution is based on two new techniques: zero test and batch equation.
The zero test is an interactive multiparty protocol which takes as input one or
more ciphertexts and outputs 0 if at least one ciphertext is an encryption of 0,
and outputs 1 otherwise. Batch equation allows equality between multiple pairs
to be checked simultaneously, using randomised inputs. A circuit to solve the
millionaire problem is reduced to a zero test with the help of homomorphism of
the employed encryption algorithm and batch equation. Then the zero test is
performed by some participants (e.g. the two millionaires themselves) without
revealing their wealth. This scheme is the only known correct, private, publicly
verifiable and efficient solution to the millionaire problem.

The structure of the rest of this paper is as follows. In Section 2, the million-
aire problem is introduced and drawbacks of the currently existing solutions are
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pointed out. In Section 3, fundamental cryptographic primitives to be employed
in this paper are recalled. In Section 4 and Section 5, an original cryptographic
primitive — zero test — and a theorem about batch equation are proposed. In
Section 6 and Section 7, a novel solution to the millionaire problem is presented
and analysed. In Section 8, the paper is concluded.

2 The Millionaire Problem

In the millionaire problem, two millionaires want to compare who is richer with-
out revealing their wealth. So they encrypt their wealth and the two ciphertexts
should be compared. Some participants (often the two millionaires themselves)
are employed to process the two ciphertexts and find out which contains a larger
message. Any solution to the millionaire problem must be correct, private and
verifiable according to the following standards.

– Correctness: If every participant is honest, the correct result is obtained.
– Privacy: After the computation, different entities’ knowledge about the two

messages is as follows:
• a millionaire: his wealth, the result and what can be deduced from them;
• others: at most the result and what can be deduced from it.

– Verifiability: Each participant can verify that the other participants are hon-
est in their computation.

Fischlin [12] argued that the participants have no motivation to deviate from
the protocol if they are input providers (millionaires). To support his claim, he
gave an example, the “flighting ticket” problem and solved it as an application
of the millionaire problem. However, verifiability is necessary to a solution to the
millionaire problem in a general sense and needed in many of its applications like
auctions. Even in the “flighting ticket” problem, motivation to deviate cannot
be completely omitted and verifiability may still be needed.

Most current solutions to the millionaire problem are general-purpose and
can deal with other applications than the millionaire problem, while some (like
[12]) only deal with the millionaire problem. Two methods have been used to
solve the millionaire problem. The first method is based on encrypted truth ta-
bles. Namely, a truth table of each logic gate in a circuit is encrypted and the
rows in every table are shuffled, so that each gate can be evaluated with its
inputs and output in ciphertext. The second method is based on logic homo-
morphism of encryption schemes. As special encryption algorithms are designed
to be homomorphic in regard of the logical relation in the gates in the circuit,
the evaluation can be realized by computing the ciphertexts of the inputs to the
function without the help of any truth table.

The recent schemes employing the first method include [24], [20], [10], [19]
and [5]. In [24], a circuit is generated by an authority AI and sent to another
authority A, who uses it to process the ciphertext inputs. A hash function is
employed in the truth tables to link their inputs to their outputs. Oblivious
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transfer is employed to submit the inputs to the function confidentially. Correct-
ness of the circuit is guaranteed by a cut-and-choose mechanism. Correctness
of the computation is guaranteed by one-wayness of the hash function and an
assumption that AI and A do not conspire. As the oblivious transfer primitive
employed in [24] is not verifiable, AI can modify the inputs to the circuit without
being detected. This problem was fixed by Juels and Szydlo [20]. They design a
primitive called verifiable 1-out-of-2 oblivious transfer, which is slightly less effi-
cient than the 1-out-of-2 oblivious transfer in [24], but prevents AI from cheating
alone. Other drawbacks of [24] are (1) the cut-and-choose mechanism to guar-
antee circuit correctness is highly inefficient in communication as a few circuits
must be transported from AI to A; (2) correctness of the auction relies on trust
that the two authorities do not collude and is not publicly verifiable1; (3) the
oblivious transfer used for bid submission is not efficient (both in computation
and communication).

In [10], [19] and [5], correctness of circuit and evaluation can be publicly veri-
fied with help of public-key cryptology. So the costly cut-and-choose mechanism
is removed and correctness is not based on any trust. However, public-key cryp-
tology is much less efficient in computation than the hash function computation
in [24] and [20]. As the number of gates in a circuit is not small and construc-
tion, evaluation and the corresponding validity verification in each gate requires
hundreds of exponentiations, an extremely high computational cost.

The recent schemes employing the second method include [31], [2] and [12].
The schemes in [31] and [12] limit the computation to a two-input-provider
one-participant situation and employ a technique called non-interactive cryp-
tocomputing, where one input provider encrypts his input and the other input
provider acts as the participant to perform the computation on the encrypted in-
put. The scheme in [2] is a multiparty version of [31]. In [31], NOT and OR gates
are used to construct the circuits while Goldwasser-Micali encryption or ElGa-
mal encryption are extended to be NOT and OR homomorphic to calculate NOT
and OR logic in ciphertext. Extension of logic homomorphism is implemented by
expanding and combining ciphertexts. This expansion and combination mech-
anism brings two problems. The first problem is that the distribution of the
expression of the final result is dependent on the circuit (namely the input of
the participant), which violates privacy. The second problem is that the length
of ciphertexts increases quickly as the computations go on, which brings a heavy
burden on computation and communication. The efficiency pressure is so great,
that depth of the circuit (thus number and length of the inputs) is strictly lim-
ited in [31]. The scheme in [2] also has these two drawbacks. Non-interactive

1 Although it is said in [24] that “A naive verification procedure is to require the
auctioneer to publish the tables and garbled input values of the circuit (signed by
the AI), and allow suspecting bidders to simulate its computation”, this verification
procedure violates the basic rule in [24] that AI alone cannot know the bids. So
another verification method based on “signed ‘translation’ table” in [24] has to be
employed. Soundness of this verification method is based on an assumption that AI
does not reveal the ‘translation’ table to A.
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cryptocomputing brings a third problem to [31]: lack of verifiability. Although
Sander et al suggested the usage of a fault tolerance mechanism, it requires to
run the non-interactive cryptocomputing protocol many times, so is impractical
in efficiency. To overcome the first two problems in [31], Fischlin [12] proposed
a non-interactive cryptocomputing protocol, which sacrifices generality in [31]
and only deals with the millionaire problem. In [12], NOT, XOR and AND gates
are used to construct the circuits while Goldwasser-Micali encryption (which is
NOT and XOR homomorphic) is extended to be AND homomorphic. Ciphertext
expansion in [12] is not continual and does not bring the influence of the circuit
to the distribution of the expression of the final result. Although the first two
problems are overcome, [12] lacks verifiability too. As it employs non-interactive
cryptocomputing, there is no practical verification mechanism.

So far, there is not any correct, private, verifiable and efficient solution to the
millionaire problem. A correct, private, verifiable and efficient solution to the
millionaire problem will be designed in this paper. The new technique employs
the second method, but in a novel way.

3 Fundamental Primitives

Two fundamental primitives to be used in this paper are introduced in this
section.

3.1 Mix Network

A mix network [18, 29, 30] mixes a number of encrypted inputs to the same
number of outputs, while the link between the inputs and the outputs is kept
secret. A mix network is usually composed of some mixing servers, each of which
re-encrypts (or decrypts) and permutes the inputs in turn. The following two
properties are usually required.

1. Correctness: the plaintexts of outputs must be a permutation of the plain-
texts of the inputs.

2. Privacy: the permutation between the inputs and the outputs is unknown.

Correctness of a mix network must be publicly verifiable. There are two methods
to verify correctness of a mix network.

1. Global verification: after all the servers have finished their mixing and the
outputs are decrypted, a final verification is performed on the outputs in
plaintext.

2. Individual verification: immediately after each server’s mixing, he has to
prove that his mixing is correct and the proof is verified instantly.

Usually, mix network with global verification is more efficient, but global veri-
fication requires that some parties must know the plaintexts in the inputs and
can only be performed after the outputs are decrypted.
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3.2 Modified ElGamal Encryption

ElGamal encryption is modified slightly as follows to be additive homomorphic.

– Integers p and q are large primes, such that p = 2q+1. Integer g is a generator
of the cyclic subgroup of order q in Z∗

p .
– The private key is an integer x in Zq and the public key is (p, g, y =

gx mod p).
– Encryption: a message m in Zq is encrypted into c = (a, b) = (gr mod

p, gmyr mod p) where r is randomly chosen from Zq.
– Decryption: given a ciphertext c = (a, b), firstly d = b/ax mod p is calculated,

then a search is performed to find m = logg d.

As in this paper decryption is only employed to test whether a ciphertext con-
tains a zero or not, the search becomes a comparison of d and 1 (m = 0 iff
d = 1).

In the rest of this paper,

– unless specified all the computations are performed modulo p;
– when c1 and c2 are two modified ElGamal ciphertexts and c1 = (a1, b1),

c2 = (a2, b2)
• c1c2 = (a1a2, b1b2);
• c1/c2 = (a1a

−1
2 , b1b

−1
2 );

• cγ
1 = (aγ

1 , bγ
1).

4 A Building Block—Zero Test

Zero test is a new technique to test whether one or more ciphertexts contain a
zero without decrypting them. The employed encryption algorithm E() must be
semantically secure2 and additive homomorphic: E(m1)E(m2) = E(m1 + m2).
The corresponding decryption function is D(), which must be a distributed de-
cryption function. The modified ElGamal encryption in Section 3.2 is employed
in this paper3. In this modified ElGamal encryption, an exponentiation with
the message as its exponent is encrypted using normal ElGamal encryption,
so it is additive homomorphic. As ElGamal encryption is based on DL prob-
lem, distributed key generation [11, 27, 14] without any trusted party can be
implemented efficiently. Although usually a search of logarithm is needed in the
decryption function of the modified ElGamal encryption, the costly search is not

2 Roughly, an encryption algorithm is said to be semantically secure if given m0, m1

and c = E(mk) where k = 0 or 1, the difference between the probability that k
can be correctly guessed and 0.5 is negligible. See [23–Page 306] for more formal
definition.

3 Paillier encryption [25] with distributed decryption could be used, but distributed
generation of an encryption system based on factorization problem is highly ineffi-
cient.
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necessary in this paper, where any decryption is only performed to test whether
the encrypted message is a known certain value, say zero. So application of the
modified ElGamal encryption in this paper is efficient.

4.1 Simple Zero Test

We start with a simple case: to test a single ciphertext. Given a ciphertext c, it
is required to test whether D(c) = 0 without revealing D(c). The test is denoted
as simple zero test ZT (c), which outputs 0 if D(c) = 0, 1 if D(c) �= 0. This
technique is similar to a equality test technique in [22]. However, a multiparty
test is used here while 2 two-party test is used in [22]. Suppose the private key
is shared by some authorities A1, A2, . . . , Am with a threshold secret sharing.
The simple zero test is as follows.

1. Randomization
Each Al chooses a random integer rl from {2, 3, . . . , q − 1} and calculates
cl = crl

l−1 to randomise the ciphertext where c0 = c. It is publicly verifiable
that cl �= 1 (al �= 1 is verified where cl = (al, bl)) and cl �= cl−1, so it is
ensured that rl > 1. Each Al proves cl is an exponentiation of cl−1 for l =
1, 2, . . . ,m using a proof of equality of logarithms [7]: logal−1

al = logbl−1
bl.

2. Decryption
The authorities cooperate to calculate d = D(cm) and prove the correctness
of the distributed decryption using Chaum-Pedersen proof of equality of
logarithms in [7] (see [27, 28] for details of distributed ElGamal decryption
and its correctness verification). The output of the zero test is then as follows.

ZT (c) =
{

0 if d = 0
1 if d �= 0 (1)

Theorem 1. ZT () is correct (if D(c) = 0, then ZT (c) = 0) and sound (if
D(c) �= 0, then ZT (c) = 1).

Proof: As the correctness proof of randomization (proof of equality of logarithms
[7]) is sound (if Al does not know rl such that cl = crl

l−1, he can pass the verifica-

tion with only a negligible probability), cm = c
∏m

l=1
rl with an overwhelmingly

large probability (in regard to the length of the challenge in the proof of knowl-
edge of logarithm in [32] or in the proof of equality of logarithms in [7]) if the
randomization is verified to be valid.

As the proof of correctness of decryption (Chaum-Pedersen proof of equality
of logarithms in [7]) is sound (incorrect decryption can pass the decryption veri-
fication with only a negligible probability), ZT (c) = D(cm) with an overwhelm-
ingly large probability (in regard to the length of the challenge in the Chaum-
Pedersen proof of equality of logarithms in [7]) if the decryption is verified to be
valid. So ZT (c) = D(c

∏m

l=1
rl) with an overwhelmingly large probability.

As E() is additive homomorphic, D(c
∏m

l=1
rl) = D(c)

∏m
l=1 rl. So ZT (c) =

D(c)
∏m

l=1 rl if the whole verification succeeds. So, if D(c) = 0, ZT (c) = 0,
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therefore ZT () is correct. As it is publicly verifiable that cm �= 1, it is guaranteed∏m
l=1 rl �= 0 mod q. So if D(c) �= 0, then ZT (c) �= 0. �

Theorem 2. ZT () is private. (No information about D(c) is revealed except
whether it is zero if at least one participant conceals his mixing and the number
of dishonest authorities is not over the sharing threshold.)

Proof: The correctness proof of randomization (proof of equality of logarithms
in [7]) is special honest-verifier zero knowledge, so rl is kept secret in the proof.
Moreover, if the number of dishonest authorities is not over the threshold, none
of c0, c1, . . . cm−1 can be decrypted. So the only revealed information about D(c)
is D(c)

∏m
l=1 rl, from which the cooperation of all the authorities is necessary

to deduce D(c). Moreover, D(c)
∏m

l=1 rl is uniformly distributed in the message
space of the encryption algorithm. So, if the number of dishonest authorities
is not over the sharing threshold (thus no ciphertext but cm can be decrypted
and at least one authority Al chooses rl randomly), D(c)

∏m
l=1 rl is uniformly

distributed and independent of D(c). Therefore, if the number of dishonest au-
thorities is not over the sharing threshold, no information about D(c) is revealed
except whether it is zero. �

Simple zero test is publicly verifiable as both randomization and distributed
decryption are publicly verifiable.

4.2 Complex Zero Test

As ZT () can only test whether a single ciphertext is an encryption of zero, it
cannot work when there are more than one ciphertext to test (to be zero or
not). In a complex zero test, it is required to test whether there is at least one
encryption of zero in multiple ciphertexts without revealing any other informa-
tion about the messages encrypted in the ciphertexts. Suppose ciphertexts ci for
i = 1, 2, . . . , n are the encrypted inputs to test. The complex zero test is denoted
as ZM(c1, c2, . . . , cn), which returns 0 iff there is at least one encryption of zero
in ci for i = 1, 2, . . . , n. The test ZM(c1, c2, . . . , cn) is implemented as follows
where the decryption key is shared by authorities A1, A2, . . . , Am.

1. Mix network
The authorities act as mixing servers and set up a mix network to mix ci

for i = 1, 2, . . . , n to ciphertexts c′i for i = 1, 2, . . . , n. The mix network
must be correct and private. As it is not desired to decrypt the outputs c′i
for i = 1, 2, . . . , n in this paper, correctness of the mixing must be publicly
verifiable without decrypting them. So mix networks with global verification
[26, 17, 29] cannot be employed although they are very efficient. Among the
mix networks employing individual verification, [18] and [30] are good choices
here. Both of them are efficient and their correctness and privacy are strong
enough for many applications including zero test. [30] is more efficient than
[18], but achieves weaker privacy.4

4 Shuffling in groups and batch verification of validity of shuffling are employed in [30].
The grouping operation leads to high efficiency, but weakens privacy a little.
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2. Simple zero tests
The authorities then cooperate to perform ZT (c′i) for i = 1, 2, . . . , n one by
one until a zero is found in one simple zero test or all the n simple tests
finish. The output of the zero test is then as follows.

ZM(c1, c2, . . . , cn) =
{

0 if a zero is found in one simple zero test
1 if no zero is found after all the simple tests finish

(2)

Theorem 3. ZM() is correct and sound (ZM(c1, c2, . . . , cn) = 0 iff there is at
least one encryption of zero in ci for i = 1, 2, . . . , n).

Proof: Equation (2) indicates that ZM(c1, c2, . . . , cn) = 0 iff ZT (c′i) = 0 for
some i in {1, 2, . . . , n}. As each ZT () is correct and sound, ZT (c′i) = 0 iff c′i
encrypts a zero. So ZM(c1, c2, . . . , cn) = 0 iff c′i encrypts a zero for some i in
{1, 2, . . . , n}.

As the employed mix network ([18] or [30]) is correct, {D(c′1),D(c′2), . . . ,
D(c′n)} = {D(c1),D(c2), . . . , D(cn)}. So ZM(c1, c2, . . . , cn) returns zero iff
D(ci) = 0 for some i in {1, 2, . . . , n}. �

Theorem 4. ZM() is private. (No information about D(ci) for i = 1, 2, . . . , n
is revealed except whether there is at least one zero among them if at least one
authority conceals his mixing and the number of dishonest authorities is not over
the sharing threshold.)

Proof: As ZT () is private, no information about D(c′i) for i = 1, 2, . . . , n is
revealed in ZM() except whether at least one of them is zero and the index of
the first zero among them (if there is at least one zero). As the employed mix
([18] or [30] ) network is private, no link is known between c1, c2, . . . , cn and
c′1, c

′
2, . . . , c

′
n if at least one authority conceals his mixing and the number of

dishonest authorities is not over the sharing threshold. So no information about
D(c′i) for i = 1, 2, . . . , n is revealed in ZM() except whether at least one of them
is zero. �

Complex zero test is publicly verifiable as both the mix network and simple zero
test are publicly verifiable.

5 Batch Equation

To apply zero test to the millionaire problem, the following theorem about batch
equation is necessary. Batch equation is a technique to test equality of each
pair of integers in multiple pairs. The idea is similar to the so called “batch
verification” [1]. However, unlike batch verification, no zero-knowledge proof or
verification is involved in batch equation.

Theorem 5. When there exists yi �= zi mod q with any i in {1, 2, . . . , n},∑n
i=1 yiti =

∑n
i=1 ziti mod q with a probability no more than 2−T if q is a prime,

ti is randomly chosen from {0, 1, 2, . . . , 2T − 1} for i = 1, 2, . . . , n and q ≥ 2T .

To prove Theorem 5, a lemma is proved first.
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Lemma 1. Suppose t1, t2, . . . , tv−1, tv+1, tv+2, . . . , tn are constant. If q is a
prime, yv �= zv mod q, q ≥ 2T and

∑n
i=1 yiti =

∑n
i=1 ziti mod q, then there is

only one possible T -bit solution for tv.

Proof: If this lemma is not correct, then the following two equations can be
satisfied simultaneously where yv �= zv mod q, |tv| = |t̂v| = T and tv �= t̂v.

n∑
i=1

yiti =
n∑

i=1

ziti mod q (3)

(
v−1∑
i=1

yiti) + yv t̂v +
n∑

i=v+1

yiti = (
v−1∑
i=1

ziti) + zv t̂v +
n∑

i=v+1

ziti mod q (4)

Subtracting (4) from (3) yields

yv(tv − t̂v) = zv(tv − t̂v) mod q

So
(yv − zv)(tv − t̂v) = 0 mod q

Note that tv − t̂v �= 0 mod q because q ≥ 2T and |tv| = |t̂v| = T .
As q is a prime, yv − zv = 0 mod q. A contradiction to the statement yv �=
zv mod q is found. Therefore, the lemma is correct. �

Proof of Theorem 5: Lemma 1 implies that among the (2T )n possible combi-
nations of {t1, t2, . . . , tn} in {0, 1, 2, . . . , 2T − 1}n, at most (2T )n−1 of them can
satisfy

∑n
i=1 yiti =

∑n
i=1 ziti mod q when yv �= zv mod q. So if yv �= zv mod q

and ti are randomly chosen from {0, 1, 2, . . . , 2T − 1} for i = 1, 2, . . . , n, then∑n
i=1 yiti =

∑n
i=1 ziti mod q is satisfied with probability no more than 2−T . �

6 Solution to the Millionaire Problem

The millionaire problem is solved in a circuit to compare two ciphertexts to deter-
mine which one contains a larger message without decrypting them. The circuit
is implemented through three levels of computation as shown in Statement (5),
which is true iff D(c1) > D(c2).

(D(c1,1) = 1 ∧ D(c2,1) = 0) ∨ (D(c1,1) = D(c2,1) ∧ D(c1,2) = 1 ∧ D(c2,2) = 0)
∨ . . . ∨ (D(c1,1) = D(c2,1) ∧ D(c1,2) = D(c2,2) (5)
∧ . . . ∧ D(c1,L−1) = D(c2,L−1) ∧ D(c1,L) = 1 ∧ D(c2,L) = 0)

At the innermost level, there are tests of bit equality and tests of bit difference,
which can be implemented with the help of homomorphism of the employed
encryption algorithm. At the middle level, there are computations of “AND”
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logic, which can be implemented with the help of batch equation and homomor-
phism of the employed encryption algorithm. At the outermost level, there are
computations of “OR” logic, which can be implemented using zero test.

Suppose the two messages are encrypted bit by bit as c1 = (c1,1, c1,2, . . . , c1,L)
and c2 = (c2,1, c2,2, . . . , c2,L) where the most significant bit is on the left. The
solution is as follows.

1. The participants (e.g. the two millionaires) corporately and randomly choose
ti from {0, 1, 2, . . . , 2T − 1} for i = 1, 2, . . . , n. For example, one million-
aire randomly chooses t1,i for i = 1, 2, . . . , n and publishes H(t1,i) for i =
1, 2, . . . , n while the other randomly chooses t2,i for i = 1, 2, . . . , n and pub-
lishes H(t2,i) for i = 1, 2, . . . , n where H() is a one-way and collision-resistant
hash function. Then they publish ti,1, ti,2 for i = 1, 2, . . . , n and calculate
ti = ti,1 + ti,2 mod 2T for i = 1, 2, . . . , n.

2. The participants act as the authorities in ZM() and perform

ZM ( c1,1/(E(1)c2,1) , (c1,1/c2,1)t1(c1,2/(E(1)c2,2))t2 , . . .

(
L−1∏
i=1

(c1,i/c2,i)ti) (c1,L/(E(1)c2,L))tL ) (6)

where the modified ElGamal encryption in Section 3.2 is employed and
E(1) = (1, g). Then D(c1) is declared to be larger than D(c2) iff State-
ment (6)=0.

Theorem 6. The solution to the millionaire problem through Statement (6) is
a correct and sound with an overwhelmingly large probability (D(c1) > D(c2) iff
Statement (6)=0 with an overwhelmingly large probability).

Proof: D(c1) > D(c2) iff Statement (5) is true. According to additive homomor-
phism of the modified ElGamal encryption, Statement (5) is equivalent to

D(c1,1/(E(1)c2,1)) = 0 ∨ (D(c1,1/c2,1) = 0 ∧ D(c1,2/(E(1)c2,2)) = 0) ∨
. . . ∨ (D(c1,1/c2,1) = 0 ∧ D(c1,2/c2,2) = 0 ∧ . . . (7)
∧D(c1,L−1/c2,L−1) = 0 ∧ D(c1,L/(E(1)c2,L)) = 0)

According to Theorem 5, with an overwhelmingly large probability Statement (7)
is equivalent to

D(c1,1/(E(1)c2,1)) = 0 ∨ t1D(c1,1/c2,1) + t2D(c1,2/(E(1)c2,2)) = 0 ∨
. . . ∨ t1D(c1,1/c2,1) + t2D(c1,2/c2,2) + . . . (8)
+tL−1D(c1,L−1/c2,L−1) + tLD(c1,L/(E(1)c2,L)) = 0

According to additive homomorphism of the modified ElGamal encryption, State-
ment (8) is equivalent to

(D(c1,1/(E(1)c2,1)) = 0 ∨ D((c1,1/c2,1)t1(c1,2/(E(1)c2,2))t2) = 0 (9)

∨ . . . ∨ D((
L−1∏
i=1

(c1,i/c2,i)ti)(c1,L/(E(1)c2,L))tL) = 0
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So D(c1) > D(c2) iff one of the L clauses in Statement (9) is true. As ZM() is
correct and sound method to test whether there is any zero encrypted in some
ciphertexts, Statement (9) can be evaluated through Statement (6). Therefore,
D(c1) > D(c2) iff Statement (6)=0 with an overwhelmingly large probability. �

Theorem 7. The solution to the millionaire problem through Statement (6) is
private.

Proof: The computations in Statement (6) before the zero test are in ciphertext
and involves no decryption, so are private. The computation in ZM() is private
as proved in Theorem 4. So the computations in Statement (6) are private. �

7 Analysis

Suppose the two millionaires act as the participants, the cost of the solution of
the millionaire problem includes:

– (L + 2)(L − 1) short exponentiations (T -bit exponent)
– 2L divisions;
– about 16L full-length exponentiations for the mix network in [18] or 2(2L +

k(4k− 2)) full-length exponentiations for the mix network in [30] where k is
a small parameter unrelated to L;

– average of L/2 simple zero tests: 2L full-length exponentiations, L proofs
of equality of logarithms (costing 2L full-length exponentiations) and L/2
distributed decryptions and validity proof of decryptions (costing 3L full-
length exponentiations).

A comparison between the new solution to the millionaire problem and solu-
tions based on the existing solutions is provided in Table 1. The schemes in [10]
and [2] are similar to [19] and [31] respectively, so are not analysed separately. In
the schemes in Table 1, only [12] and our proposed scheme provided a concrete
circuit to solve the millionaire problem. In [12], L + L(L − 1) two-input gates
are needed, while in our scheme, L + L(L− 1)/2 two-input gates are needed. In
the other schemes, at least 7L two-input gates are needed as analysed in [21].
In [31], the number of gates should be larger than 7L as only “NOT” and “OR”
gates are used. Even if only 7L two-input gates are employed in [31], ciphertext
expansion bring an intolerable cost for encryption and communication. As each
gate has only two inputs, those 7L gates must be in log2 7L levels. So in [31] at
least 8log2 7L = 343L3 ciphertexts must be transmitted. It is pointed out in [12]
that at least L4 multiplications are needed in [31]. In [12], L(L + 1)/2 “AND”
gates are needed, so λL(L + 3)/2 encryptions (each costly 1.5 multiplication in
average) and λL(L + 1)/2 multiplications are needed for “AND” gates. There
are L(L + 1)/2 multiplications for “XOR” and “NOT” computation in [12]. In
this analysis, the number of multiplications are accounted in computation and
transportation of integers with significant length (several hundred bits or longer)
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is accounted in regard of communication where K is the bit length of full-length
exponent (e.g 1024 bits). One full-length exponentiations is regarded as 1.5K
multiplications and computation of the product of n short exponentiations is
regarded as n + 0.5nT multiplications.

In the example in Table 1, K = 1024 and L = 100. Let t, the number of
cuttings in [20] and λ, the parameter in [12] be 40. The parameter k in the mix
network [30] is set to be 5, which is big enough to provide strong privacy.

The analysis in Table 1 indicates that both [12] and the proposed solution
can efficiently solve the millionaire problem with short inputs. Compared to the
proposed schemes, the scheme in [12] has a drawback: lack of verifiability. Is it
possible to overcome the drawback and make the scheme in [12] verifiable? A
naive method is to employ the shuffling-then-decryption technique from the pro-
posed scheme to [12]. However, this method is infeasible. Firstly, non-interactive
cryptocomputing implies that validity of the circuit is not verifiable. As the
circuit is dependent on the participant’s input, revealing the circuit violates pri-
vacy of the the participant’s input. Even if non-interactive cryptocomputing is
replaced by two-party computation in [12] and the circuit is independent on any
input, verifiability still cannot be practically achieved in [12]. Distributed key
generation for Goldwasser-Micali encryption (distributed generation of a secret
factorization) is much more costly than distributed key generation for ElGamal
encryption and distributing the Goldwasser-Micali private key between the two
participants without any trusted party is highly inefficient. Moreover, before the
encrypted result is output for decryption, the Lλ ciphertexts in it must be shuf-
fled using a re-encryption mix, otherwise privacy is violated. Although it may be
possible to design a verifiable re-encryption mix for Goldwasser-Micali cipher-
texts5, the large-scale shuffling (Lλ = 4000 when L = 100 and λ = 40) and proof-
verification of validity of the shuffling is too impractical. On the other hand, the
proposed solution to the millionaire problem can be modified to non-interactive
cryptocomputing to improve its efficiency. After the modification, distributed
decryption and the costly proof operations can be omitted, so that the proposed
scheme becomes much more efficient by sacrificing verifiability. Without veri-
fiability, the proposed scheme becomes more efficient than the scheme in [12].
In summary, the new solution achieves the best trade-off between security and
efficiency and provides the only general, correct, private, verifiable and efficient
solution for the millionaire problem.

8 Conclusion

A new solution to the millionaire problem is designed to achieve correctness,
privacy, verifiability and high efficiency, which have never been achieved simul-
taneously before. In the future, the possibility of using the techniques in this
paper to compute other functions will be investigated.

5 There is no such shuffling or mix at present.
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