Multiplicative Homomorphic E-Voting*

Kun Peng', Riza Aditya', Colin Boyd', Ed Dawson', and Byoungcheon Lee!:?

! Information Security Research Centre
IT Faculty, Queensland University of Technology
{k.peng, c.boyd, e.dawson, r.aditya}@qut.edu.au
http://www.isrc.qut.edu.au
2 Joongbu University, Korea
sultan@joongbu.ac.kr

Abstract. All the currently existing homomorphic e-voting schemes
are based on additive homomorphism. In this paper a new e-voting
scheme based on multiplicative homomorphism is proposed. In the tally-
ing phase, a decryption is performed to recover the product of the votes,
instead of the sum of them (as in the additive homomorphic e-voting
schemes). Then, the product is factorized to recover the votes. The new
e-voting scheme is more efficient than the additive homomorphic e-voting
schemes and more efficient than other voting schemes when the number
of candidates is small. Strong vote privacy and public verifiability are
obtained in the new e-voting scheme.

1 Introduction

Two main methods have been applied to design e-voting schemes: mix network
and homomorphic tallying. Both methods can protect vote privacy when thresh-
old trust is assumed. In regard to efficiency, it is demonstrated in [2] that mix
network is more suitable for elections with a large number of candidates or
choices (e.g. preferential voting) and homomorphic tallying is more suitable for
elections with a small number of candidates or choices (e.g. “YES/NO” voting)
as the latter’s cost is linear in the number of candidates or choices.

Current homomorphic e-voting schemes employ an additive homomorphic
encryption algorithm (e.g. Paillier encryption) to encrypt the votes and exploit
additive homomorphism of the encryption algorithm to recover the sum of votes
for any candidate or choice with a single decryption. As no single vote is de-
crypted, vote privacy is protected. It is surprising that multiplicative homomor-
phism has never been employed to design any voting scheme, although it may
lead to better performance.

The contribution of this paper is a design of a multiplicative homomorphic
voting scheme. In a multiplicative homomorphic voting scheme, a multiplicative
homomorphic encryption algorithm (e.g. ElGamal encryption) to encrypt the
votes and a single decryption is performed to calculate the product of votes.

* The research in this paper was supported by Australian Research Grants DP0345458
and LX0346868

2 Kun Peng et al.

Then the product is factorized and the votes are recovered. Like in additive
homomorphic voting, no single vote is decrypted in multiplicative homomor-
phic voting, so vote privacy is protected too. The most important advantage of
multiplicative homomorphic voting is that it is always more efficient than ad-
ditive homomorphic voting and more efficient than other voting schemes when
the number of candidates is small. In brief, multiplicative homomorphic voting
improves efficiency without compromising vote privacy or public verifiability.

2 Related Work

In an election, the voters select a certain number of winners from a few can-
didates. At first the identities of the candidates and the number of expected
winners are declared. Then every bidder appoints some candidates in his bid,
whose number is equal to the number of expected winners. Finally some talliers
count the votes and declare the voting result. In an e-voting system, tallying
must be performed without revealing any vote.

Definition 1 If after the voting every vote is only known to distribute uniformly
in the vote space (containing all the possible choices), we say that complete vote
privacy is achieved. If after the voting every voter’s choice is only known to be
among a large number of published votes, whose number is much larger than the
number of possible choices, we ay that strong vote privacy is achieved.

So far, two methods have been employed to protect vote privacy in voting
schemes. The first one is mix network. In voting schemes using this method
[15,34,28,31,32,27,20,7,17,36,1,23,9] (called mix voting), the votes are shuf-
fled in the mix network and then decrypted separately. Although every single
vote is decrypted, they cannot be linked to the voters after being shuffled. So,
vote privacy is achieved. The second is homomorphic tallying, which exploits
the homomorphism of the encryption algorithm (used to encrypt the votes) to
implement the tallying without decrypting any single vote. E-voting schemes
employing the second method are called homomorphic voting and include [18,
5,33,6,11,12, 3,26, 35,19,4,21,13,22,24, 25|. Since no single vote is decrypted,
vote privacy is obtained. Homomorphic voting schemes are efficient when the
number of candidates or choices is small. However, homomorphic voting has
a drawback: each vote must be verified to be valid. Without the vote validity
check, correctness of the tallying cannot be guaranteed. When the number of
candidates or choices is large (e.g. in a preferential voting), computational and
communicational cost for the proof and verification of vote validity is so high
that homomorphic voting becomes less efficient than mix voting. So, it is widely
believed that homomorphic voting is only suitable for elections with a small
number of candidates or choices (e.g. “YES/NO” voting).

An encryption scheme is additive homomorphic if F(mi+ms) = E(mq)E(ms)
for any messages m; and mq where E() stands for the encryption function. In an
additive homomorphic voting scheme, each bidder makes a choice for every can-
didate (1 for the candidate or 0 against the candidate), encrypts his choices as

Multiplicative Homomorphic E-Voting 3

his encrypted vote. Then he proves that his vote is valid, namely every choice en-
crypts 0 or 1 and the number of 1s encrypted in his vote is equal to the expected
number of winners specified in the voting rule. The talliers verify that each vote
is valid. Then they decrypt the product of encrypted choices for each candidate
or the product of all the encrypted votes (in some special voting schemes [24,
25] each voter combines his choices for all the candidates in one ciphertext) to
find out the sum of votes for each candidate without decrypting any single vote.

One of two possible additive homomorphic encryption algorithm are usu-
ally employed: Paillier encryption or modified ElGamal encryption. Paillier en-
cryption is inherently additive homomorphic and more frequently applied. The
original ElGamal encryption scheme can be simply modified to be additive ho-
momorphic: a message is used as an exponent in an exponentiation computation,
then the exponentiation is encrypted using the original ElGamal encryption. A
passive result of this modification is that a search for logarithm must be per-
formed in the decryption function, which becomes inefficient when the searching
space is not too small. The modified ElGamal encryption is employed in homo-
morphic voting schemes [18, 22, 24, 25], where the details of the modification and
the consequent search are described in detail.

A disadvantage of additive homomorphic voting compared to multiplicative
homomorphic voting is inefficiency due to the following reasons.

— If Paillier encryption is employed, the following drawbacks in efficiency exist.

e Inefficient set-up
In voting schemes, the private key of the encryption algorithm must be
generated and shared by multiple talliers, so that it is not needed to
trust any single party to achieve vote privacy. As the private key is a
factorization secret in Paillier encryption, distributed key generation is
highly inefficient. In comparison, distributed key generation in ElGamal
(distributed generation of a secret logarithm as the private key) is much
more efficient as described in [14, 30, 16].

e Multiple encryption
Usually, a voter has to perform an encryption for each candidate and
prove each of his encryptions contains a valid message.

o Inefficiency of multiplicative and exponentiation computations
In Paillier encryption, each multiplication is performed modulo N2 where
N is the product of two large primes and its factorization is the private
key (see [29] for details). In comparison, in original ElGamal encryption,
each multiplication is performed modulo p, a large prime. If the same
security strength is required, N and p should have the same length (e.g.
1024 bits). As the modulus in Paillier encryption scheme is a square and
usually the computation for modular multiplication is quadratic in the
operand size, multiplication in Paillier encryption scheme is more costly
than that in ElGamal encryption scheme. Although Chinese Remain-
der Theorem can be employed to improve the efficiency of multiplicative
computation with a composite modulus in Paillier encryption scheme,
Paillier admitted this efficiency improvement is only available in key

4 Kun Peng et al.

generation and decryption when the factorization of N is known. Paillier
indicated that a multiplication in Paillier encryption is more than three
times as costly as a multiplication in ElGamal encryption when N and
p should have the same length (e.g. 1024 bits). Usually distributed de-
cryption is employed in voting schemes to minimize trust and strengthen
robustness, so the factorization of IV is not known to any single tallier,
who performs the decryption. Therefore, we can assume that when the
same security strength is required a multiplication in Paillier encryp-
tion with distributed decryption is at least three times as costly as a
multiplication in ElGamal encryption.

— If the modified ElGamal encryption is employed, the following drawbacks in
efficiency exist.

e Multiple encryption
Usually, a voter has to perform an encryption for each candidate and
prove each of his encryptions contains a valid message.

o Inefficient DL search

As stated before, a search for logarithm is needed in the decryption
function. Even though the (currently known) most efficient solution for
DL in a certain interval — Pollard’s Lambda Method — is employed,
0.5 log, n exponentiations, O(n’%) multiplications and O(0.5 log, n) stor-
age are needed where n is the number of voters. As the number of voters
is often large in voting applications, this is a high cost. To make the
search more efficient, the votes may be divided into multiple groups and
a separate tallying is performed in each group. However, this division
increases the number of decryptions as a separate decryption is needed
for every candidate in each group.

In [24, 25], the modified ElGamal encryption and its additive homomorphism
are exploited in a very special way. Only one encryption is needed in a vote,
which is composed of several sections, each corresponding to one candidate.
So only one decryption is needed to decrypt the product of all the encrypted
votes. Although the numbers of encryptions and decryptions are reduced,
they are not the main computational burden in the voting scheme. The main
computational burden of the voting scheme increases as the computational
cost for vote validity proof increases and the cost of the DL search increases
to O(mn™~1) multiplications and O(nm) full length (e.g. 1024 bits) storage
space where m is the number of candidates. As the number of voters is
often large in voting applications, the cost for the search is intolerable. So
the special additive homomorphic tallying in [24,25] actually deteriorates
efficiency although it was supposed to improve efficiency.

In comparison, as will be illustrated in Section 3, multiplicative homomorphic
voting employs efficient distributed key generation, requires only one encryption
per vote and needs no DL search, while it achieves vote privacy no weaker than
that of additive homomorphic voting.

Multiplicative Homomorphic E-Voting 5

3 The Multiplicative Homomorphic Voting Scheme

A multiplicative homomorphic voting scheme exploits multiplicative homomor-
phism of the encryption algorithm used for vote encryption to tally efficiently
without revealing any vote. Each voter only needs to encrypt with a multiplica-
tive homomorphic encryption algorithm one integer as his vote. An encryption
algorithm is multiplicative homomorphic if E(mims) = E(mq)E(mz) where E()
stands for the encryption function and mj,my are two random messages. A typ-
ical multiplicative homomorphic encryption algorithm is ElGamal encryption,
which is employed in this paper. The product of the encrypted votes are then
decrypted, so that the product of the votes is obtained if their product is not
over the multiplicative modulus (certain mechanism is used to guarantee this as-
sumption). Then the product is factorized to recover the votes. A voting protocol
to elect one winner from m candidates is as follows.

1. Preparation phase

Suppose there are m candidates C1, Cs, . .., C,,. ElGamal encryption modulo

p is employed for vote encryption where p = 2¢+ 1 and p, q are large primes.

Several talliers cooperate to generate and threshold share the private key

while the public key is published using the distributed key generation func-

tion in [16]. A set @ = {q1,42-..,¢m} is chosen to represent the candidates
as follows.

(a) Two sets Q1 = {1} and Q2 = P are initialised. Two integers s; and sy
representing the sizes of the two sets respectively are initialised as s; = 1
and sy = 0. Index s is initialised to be 1.

(b) The st smallest prime p, is tested.

If p? =1 mod p,

— ps is a quadratic residue;

— ps is put into @7 and set s; = s1 + 1.
If p? # 1 mod p,

— ps 18 not a quadratic residue;

— ps is put into Q2 and set so = s9+ 1.

(¢) If s < m and s9 < m, set s = s+ 1 and go to Step (b). Otherwise, go
to next step.

(d) IfSl zm,Q:Ql;If52:m, Q:QQ

With this setting-up, the members in @ are either all quadratic residues or

all quadratic non-residues, so their encryptions are indistinguishable?.

The talliers set up the ElGamal encryption:

— they cooperatively generate the public key g and y in G, which is the
subgroup in Z; with order g using the distributed key generation tech-
niques in [14, 30, 16], such that the private key « = log, y are shared by
them;

3 An alternative method to generate @ is to choose p and ¢ such that the m — 1
smallest primes are quadratic residues modulo p. Different large primes are tested
as possible choices of p until a satisfying p is found. So, @ contains 1 and the m — 1
smallest primes. However, it is not clear whether this method is feasible or efficient,
especially when m is large.

6 Kun Peng et al.

— public key g and y are published.
2. Voting phase
Each of the n voters Vi, V5, ..., V,, chooses a vote from Q. Voter V; encrypts
his vote v; to ¢; = E(v;) = (ai,b;) = (¢, v;y") where r; is randomly chosen
from Z,. V; proves that an element in @) is encrypted in ¢; without revealing
his vote using the following honest-verifier ZK proof:

log, a; = log, (bi/q1) V log,a; =log,(bi/q2) V...V log,a; =log,(bi/qm)

This proof is based on the ZK proof of equality of logarithms [8] and the ZK
proof of partial knowledge [10].
3. Tallying phase

The talliers verify that every vote is valid. Then they randomly divide the
encrypted votes ci,co,...,c, to groups of size k, so that Max(Q)* < p
where Maz(Q) stands for the largest element in set Q. If Maz(Q)™ < p, the
division is not necessary and all the votes are in the same group. In each
group the following multiplicative homomorphic tallying is performed.

(a) Suppose ¢/, ch, ..., ¢} are the encrypted votes in a group.
(b) The talliers cooperate to calculate v = D(HiC 1 ¢;) where D() denotes
decryption.

(c) v is factorized*.
-If1¢Q,v= H;nzl p;j and the number of votes in this group for the
j' candidate is ¢; for j = 1,2,.
- Ifle@,v= H;n 11 p; and the number of votes in this group for the
§t" candidate is tj—1 for j =2,3,...,m while the number of votes in

m— 1

this group for the first candldate is k -2
The talliers sum up the results in all the groups to get the final result.

4 Analysis

The new voting scheme is analysed in this section to show that it is correct and
efficient.

Theorem 1. The multiplicative homomorphic tallying in each group with en-
crypted votes ¢}, ch, ..., ¢} is correct.

Proof: In the multiplicative homomorphic tallying in each group with encrypted
votes ¢, ch, ..., ¢,

m—1
D([[eh=v=T]»7
, i

where H;n:_ll p;j is a factorization of v.
As ElGamal encryption is multiplicative homomorphic,

k
D(H) HD) mod p
i=1

4 This factorization is very efficient as each prime in Q is very small.

Multiplicative Homomorphic E-Voting 7

When the encrypted votes are divided into groups, it is guaranteed that Maz(Q)* <
p. So Hle D(c}) < p Therefore,

k

k m—1
[1o6)=p]e) = [T

i=1 i=1 =1

As D(c}) fori =1,2,...,k are verified to be in @ in the voting phase, Hle D(c})
is also a factorization of v.
As there is a unique factorization for any integer, Hle D(c}) and H;n;ll péj

are the same factorization. Namely, each prime factor in H?:I D(c) is also a

prime factor in H;n:_ll pz" and each prime factor in H;n:_ll pz-j is also a prime
Tk
factor in [[;_; D(c}).
Therefore, all the non-one votes encrypted in ¢}, ¢, ..., ¢, and only these

votes are prime factors in H;n:_ll p;-j . That means every non-one vote is correctly
recovered.

As the number of vote in each group is a constant k, the number of “1” votes
is also correctly recovered if there are any. O

Theorem 2. Multiplicative homomorphic tallying does not reveal any vote.
Sketch of proof:

— Semantically secure encryption
The usage of ElGamal encryption in this paper is semantically secure due to
the choice of message space @. (Either all members are quadratic residues
or no member is quadratic residue where p = 2¢+ 1) So, without the private
key to decrypt the votes, it is difficult to get any information about any vote.

— Private key (decryption) security
As the private key is protected by a threshold key sharing mechanism, no
single vote is decrypted if a threshold trust on the talliers is assumed.

— Unlinkability (No bidder can be linked to his bid.)
As a result, the only message decrypted from the encrypted votes is the
product of votes in each group, which links no vote to the corresponding
voter. The revealed information tells no more than that a voter in every
group may have submitted any vote in the group.

— The group size is large enough for strong vote privacy.
As homomorphic tallying is only applied to elections with a small number
of candidates, m and Max(Q) are small®. As p is large (e.g. with a length
of 1024 bits), ﬂogMaI(Q) p], the size of a group, is large compared to m
where [z] denotes the smallest integer no smaller than a real number x. For
example, when m = 2 and |p| = 1024 where || stands for bit length, we get
Q = {1,2} (for simplicity, assuming 2 is a quadratic residue), Maz(Q) = 2

> Maz(Q) is no larger than the (2m — 1)** smallest prime, which is no more than a
small multiple of m when m is small.

8 Kun Peng et al.

and the group size is larger than 1024. When there are only two candidates
and more than 1024 votes are mixed together in each group, strong vote
privacy is achieved.

O

Every operation in the voting scheme can be publicly verified by anyone.
(Note that public proofs of vote validity and correctness of decryption are pro-
vided by the voters and talliers respectively.) The computational cost of additive
homomorphic voting employing Paillier encryption and that of the proposed mul-
tiplicative homomorphic voting are listed in Table 1. As stated in Section 2, the
DL search in the decryption of the modified ElGamal encryption in [18,22, 24,
25 is too inefficient®. So the modified ElGamal encryption is not considered as
a good choice in additive homomorphic voting. As only small primes are em-
ployed to stand for the votes, the computational cost of the final factorization
in multiplicative homomorphic voting is negligible compared to full length ex-
ponentiation. To make a precise comparison of the efficiency of the two kinds of
homomorphic voting, it is supposed the same strength of encryption security is
required in both kinds of voting, so NV in Paillier encryption employed in additive
homomorphic voting and p in ElGamal encryption employed in multiplicative
homomorphic voting have the same length. An exponentiation in multiplicative
homomorphic voting (employing ElGamal encryption) is called a standard expo-
nentiation while an exponentiation in additive homomorphic voting (employing
Paillier encryption with distributed decryption) is accounted as three standard
exponentiations. The number of standard exponentiations is accounted in every
operation in Table 1. This table clearly illustrates that multiplicative homomor-
phic voting is always more efficient than additive homomorphic voting in key
generation, vote encryption and vote validity check. When the number of voters
is not too large, multiplicative homomorphic voting is also more efficient than
additive homomorphic voting in tallying. For example, when m = 2, |p| = 1024
and n = 1024, the needed number of standard exponentiation in tallying in
additive homomorphic voting is 12 or 6, while the needed number of standard
exponentiation in tallying in multiplicative homomorphic voting is 3. Even if
multiplicative homomorphic tallying is less efficient than additive homomorphic
tallying when the number of voters is large, it has a trivial influence on the total
cost of the voting scheme as will be shown in Table 2.

A more comprehensive efficiency comparison is presented in Table 2, where
the efficiency of MV (mix voting), AHV (additive homomorphic voting) and the
proposed MHV (multiplicative homomorphic voting) are compared. In this com-
parison, [17] (one of the most efficient mix voting) is taken as an example of mix
voting where ElGamal encryption is employed. It is assumed that the additive

5 Although some computation in the Pollard’s Lambda Method can be pre-computed,
precomputation can be employed in most voting schemes. For example, the expo-
nentiation computation in vote encryption and all the computation in the proof of
vote validity (if necessary) can be precomputed in mix voting, Paillier-based additive
homomorphic voting and multiplicative homomorphic voting.

Multiplicative Homomorphic E-Voting 9

Additive Multiplicative
homomorphic voting/homomorphic voting
Distributed highly efficient
key generation inefficient
Encryption 6m 2
per vote
Vote validity 12m + 6 4m — 2
proof per vote
Vote validity 12m +6 4m
verification per vote
Tallying computation 9Im 3[nlog, Max(Q)]
per tallier or’ 9(m — 1)

@ It is often assumed that a decryption is necessary for every candidate. However, when
n, the total number of voters is known and each vote has been verified to be valid,
m — 1 decryptions are enough. The talliers randomly choose m — 1 candidates and
decrypt the sum of votes for each of them. The vote of the remaining candidate is n
minus the sum of the votes for the m — 1 chosen candidates. We call this economical
tallying

Table 1. Computational cost of the two kinds of homomorphic voting

homomorphic voting (no existing example is referred to) employs distributed
Paillier encryption and performs every necessary operation listed in Table 1. For
simplicity, voters’ signature on the votes are omitted, so voters’ signature gener-
ation and talliers’ signature verification are not taken into account. In Table 2, ¢
is the number of talliers. The number of standard exponentiation is accounted in
computational cost and the number of transported bits is accounted in commu-
nicational cost. An example is given in Table 2, where t = 5, m = 2, |p| = 1024
and n = 1000000. For simplicity, it is assumed that 2 is a quadratic residue
modulo p, so Q = 1, 2. In this example, it is shown that even when the number
of voters is large, multiplicative homomorphic voting is still more efficient than
mix voting and additive homomorphic voting. When the number of voters is not
large and grouping is not necessary in tallying, efficiency advantage of multi-
plicative homomorphic voting is more obvious. So multiplicative homomorphic
voting is the most efficient voting solution when the number of candidates is
small.

5 Conclusion

The voting scheme in this paper employs a new tallying method: multiplicative
homomorphic tallying. It achieves the highest efficiency when the number of
candidates is small and guarantees strong vote privacy and public verifiability.

10 Kun Peng et al.

Key Voter’s Tallier’s] Communication
generation|computation| computation

MV | efficient 8 18n| 1024(6n + 18tn)

= 18000000 =98304000000

highly 18m +6| (12m+6)n| 2048(6t(m — 1)+

AHV® +9(m —1) (10m + 4)n)

inefficient = 42| = 30000009 =49152061440

dm| 4mn + 3[n| 1024(2n(m + 1)+

MHV | efficient log, Maxz(Q)]|3[nlog, Max(Q)])

=38 = 8003000 =6147072000

@ Tt is assumed economical tallying in Table 1 is employed.

Table 2. Efficiency comparison

References

1. Masayuki Abe and Hideki Imai. Flaws in some robust optimistic mix-nets. In

Advances in Cryptology—ACISP 03, pages 39-50, 2003.

2. R. Aditya, C. Boyd, E. P. Dawson, and K. Viswanathan. Secure e-voting for
preferential elections. In Proceedings of EGOV 03 Conference, pages 246-249,

Berlin, 2003. Springer-Verlag. Lecture Notes in Computer Science Volume 2738.

3. James M. Adler, Wei Dai, Richard L. Green, and C. Andrew Neff. Computa-
tional details of the votehere homomorphic election system. Technical report, Vote-
Here Inc, 2000. Available from http://www.votehere.net/technicaldocs/hom.pdf,

last accessed 22 June 2002.

4. Olivier Baudron, Pierre-Alain Fouque, David Pointcheval, Jacques Stern, and Guil-
laume Poupard. Practical multi-candidate election system. In Twentieth Annual

ACM Symposium on Principles of Distributed Computing, pages 274-283, 2001.

5. Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elections. In Proceed-
ings of the Twenty-Sizth Annual ACM Symposium on the Theory of Computing,

pages 544-553, 1994.

6. Josh Daniel Cohen Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Faculty

of Graduate School, Yale University, 1996.

7. Dan Boneh and Philippe Golle. Almost entirely correct mixing with applications
to voting. In 9th ACM Conference on Computer and Communications Security—

CCS 02, pages 68-77, 2002.

8. D. Chaum and T. P. Pedersen. Wallet databases with observers. In CRYPTO ’92,
pages 89-105, Berlin, 1992. Springer-Verlag. Lecture Notes in Computer Science

Volume 740.

9. David Chaum. Secret-ballot receipts: True voter-verifiable elections. IEEE Security

and Privacy, 2(1):38-47, January /February 2004.

10. R. Cramer, 1. B. Damgard, and B. Schoenmakers. Proofs of partial knowledge
and simplified design of witness hiding protocols. In CRYPTO ’9/, pages 174—187,

Berlin, 1994. Springer-Verlag. Lecture Notes in Computer Science Volume 839.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Multiplicative Homomorphic E-Voting 11

Ronald Cramer, Matthew Franklin, Berry Schoenmakers, and Moti Yung. Multi-
authority secret-ballot elections with linear work. In Advances in Cryptology—
EUROCRYPT 96, pages 72—83, 1996.

Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A secure and op-
timally efficient multi-authority election scheme. In Advances in Cryptology—
EUROCRYPT 97, pages 103-118, 1997.

Ivan Damgaard and Mats Jurik. A generalisation, a simplification and some appli-
cations of paillier’s probabilistic public-key system. In Public Key Cryptography—
PKC 01, pages 119-136, 2001.

P Feldman. A practical scheme for non-interactive verifiable secret sharing. In 28th
Annual Symposium on Foundations of Computer Science, pages 427-437, 1987.
Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A practical secret voting
scheme for large scale elections. In Advances in Cryptology—AUSCRYPT 92, pages
244-251, 1992.

R Gennaro, S Jarecki, H Krawczyk, and T Rabin. Secure distributed key generation
for discrete-log based cryptosystems. In EUROCRYPT ’99, pages 123-139, Berlin,
1999. Springer-Verlag. Lecture Notes in Computer Science Volume 1592.
Philippe Golle, Sheng Zhong, Dan Boneh, Markus Jakobsson, and Ari Juels. Op-
timistic mixing for exit-polls. In Advances in Cryptology—ASIACRYPT 02, pages
451-465, 2002.

Alejandro Hevia and Marcos Kiwi. Electronic jury voting protocols. 2000.
http://eprint.iacr.org/2000/035/.

Martin Hirt and Kazue Sako. Efficient receipt-free voting based on homomorphic
encryption. In Advances in Cryptology—EUROCRYPT 00, pages 539-556, 2000.
Markus Jakobsson, Ari Juels, and Ronald L. Rivest. Making mix nets robust
for electronic voting by randomized partial checking. In 11th USENIX Security
Symposium, pages 339-353, 2002.

Jonathan Katz, Steven Myers, and Rafail Ostrovsky. Cryptographic counters and
applications to electronic voting. In Advances in Cryptology—EUROCRYPT 01,
pages 78-92, 2001.

Aggelos Kiayias and Moti Yung. Self-tallying elections and perfect ballot secrecy.
In Public Key Cryptography, 5th International Workshop—PKC 02, pages 141-158,
2002.

Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and
Seungjae Yoo. Providing receipt-freeness in mixnet-based voting protocols. In to
appear in Information Security and Cryptology, ICISC 2003, 2003.

Byoungcheon Lee and Kwangjo Kim. Receipt-free electronic voting through col-
laboration of voter and honest verifier. In JW-ISC 2000, pages 101-108, 2000.
Byoungcheon Lee and Kwangjo Kim. Receipt-free electronic voting scheme with
a tamper-resistant randomizer. In Information Security and Cryptology, ICISC
2002, pages 389406, 2002.

C. Andrew Neff. Conducting a universally verifiable electronic election using ho-
momorphic encryption. White paper, VoteHere Inc, 2000.

C. Andrew Neff. Verifiable, secret shuffles of elgamal encrypted data for secure
multi-authority elections. In 8th ACM Conference on Computer and Communica-
tions Security—CCS 01, pages 116-125, 2001.

Tatsuaki Okamoto. Receipt-free electronic voting schemes for large scale elections.
In Proc. Security Protocols, 5th International Workshop 1997, pages 25-35, 1997.
P Paillier. Public key cryptosystem based on composite degree residuosity classes.
In EUROCRYPT 99, pages 223—-238, Berlin, 1999. Springer-Verlag. Lecture Notes
in Computer Science Volume 1592.

12

30.

31.

32.

33.

34.

35.

36.

Kun Peng et al.

Torben P. Pedersen. A threshold cryptosystem without a trusted party. In FU-
ROCRYPT 91, pages 522-526, Berlin, 1991. Springer-Verlag. Lecture Notes in
Computer Science Volume 547.

Andreu Riera and Joan Borrell. Practical approach to anonymity in large scale elec-
tronic voting schemes. In Network and Distributed System Security Symposium—
NDSS 99, pages 69—82, 1999.

Andreu Riera, Josep Rifa, and Joan Borrell. Efficient construction of vote-tags to
allow open objection to the tally in electronic elections. Information Processing
Letters, 75(5):211-215, October 2000.

Kazue Sako and Joe Kilian. Secure voting using partially compatible homomor-
phisms. In Advances in Cryptology—CRYPTO 94, pages 411-424, 1994.

Kazue Sako and Joe Kilian. Receipt-free mix-type voting scheme: A practical
solution to the implementation of a voting booth. In Advances in Cryptology—
EUROCRYPT 95, pages 393-403, 1995.

Berry Schoenmakers. Fully auditable electronic secret-ballot elections. XOOTIC
Magazine, July 2000.

Douglas Wikstrém. How to break, fix and optimize “optimistic mix for exit-polls”.
Technical report, Swedish Institute of Computer Science, 2002. Available from
http://www.sics.se/libindex.htlm, last accessed 08 October 2003.

