No More Panic in Florida: Is it Reality or Dream?

Aug. 21, 2001

IRIS (International Research center for Information Security)
ICU (Information and Communications Univ.), Korea

Kwangjo Kim, Jinho Kim, Byoungcheon Lee
Contents

1. Introduction
2. Security Requirements
3. Voting Schemes
4. System Configuration
5. Typical Implementation
6. Target
7. Summary
1. Introduction

- Panic in Florida, 2000
 - Manual counting vs. Electronic counting
 - Booth voting vs. Network voting
 - Local verifiability vs. Universal verifiability

- Why do we consider Internet voting?
 - Anyone: can vote using internet
 - Anywhere: from home, office, overseas, etc.

- What are the problems in Internet voting?
 - Strong security requirements: anonymity, privacy, completeness, fairness, receipt-freeness, etc.
 - No perfect solution and system
 - PKI is not ready
New Trial

- **California**
 - Shadow election test of Internet voting system for the public election in Contra Costa County in 2000.

- **Caltech-MIT**
 - Joint project started in 2000 to develop reliable and uniform US voting machine
 - To solve the problems that threatened the 2000 American presidential election in Florida

- **Cybervote**
 - Remote Internet voting with mobile handset
 - European Communities

- **Our contribution**
 - Internet voting system using PKI
 - The system satisfies most of important security requirements
2. Security Requirements

Basic requirements
- Privacy: All votes must be secret
- Completeness: All valid votes are counted correctly
- Soundness: The dishonest voter cannot disrupt the voting
- Unreusability: No voter can vote twice
- Eligibility: No one who isn’t allowed to vote can vote
- Fairness: Nothing can affect the voting

Advanced requirements
- Walk-away: The voter need not to make any action after voting
- Robustness: The voting system should be successful regardless of partial failure of the system
- Universal verifiability: Anyone can verify the validity of vote
- Receipt-freeness: Voter should not be able to prove his or her vote to a buyer. (Voter does not have any receipt for the vote)
3. Voting Scheme

■ FOO92 Scheme
 ● Fujioka, Okamoto, Ohta, “A Practical Secret Voting Scheme for Large Scale Elections”, Auscrypt’92
 ● Features: Blind signature + Mix-net + Bit commitment

■ Implementation examples
 ● Sensus : L.F. Cranor, Washington Univ.
 http://www.ccrc.wustl.edu/~lorracks/sensus
 ● EVOX : M.A. Herschberg, R.L. Rivest, MIT
 http://theory.lcs.mit.edu/~cis/voting/voting.html

■ OMAFO99 Scheme
 ● Improved version of FOO92
 ● Features : Blind signature + Mix-net + threshold encryption
OMAFO99 scheme

System overview

(1) Voter Authentication (voting + encryption + blind signature)

(2) Voting (voting + encryption + signature)

(3) Opening (Threshold decryption)
4. System Configuration

Registration stage : 0, 1
Voting stage : 2, 3
Counting stage : 4, 5, 6
Registration stage

1) Access Web Page

2) Down

3) Registration

ID & Passwd, name, etc …

4) Encrypted Data

5) Check & Store

6) Down

7) Key Generation

8) Private key

9) Public key

10) Registered Info + public key

11) Certificate Request

12) Certificate Issue

13) Certificate

Admin
Web Server

Admin
DB

CA

Voter

RA

DB
Voting Stage

1) Log In
 ID & Passwd

2) Authenticated Channel
 Admin Web Server

3) Check Double Voting
 Admin DB

Voting Applet

4) If not vote

5) Select Vote.
 Encrypt by counter key.
 Blinding.

6) Requests blind sig.

7) Blind Sig.

8) Send blind sig.

9) Unblinding.
 Encryption by mixer key.
 Sign.

10) Ballot Casting

11) Sig. Verify & Store ballot

BB Server

DB
Counting Stage

1) Mixing
2) Tallying
3) Results Publish
4) Announce
5. Typical Implementation

- **Built-in components**
 - Java crypto library J/LOCK by STI
 - CA server by KSIGN
 - Web interface by InsolSoft
 - Security management by SECUi.com

- **Severs**
 - AS,BB : Apache web server and Tomcat to support JSP
 - DB : Oracle DB + JDBC
 - M,T : Implemented in C language

- **Voting applet**
 - Signed java applet to access a secret key and to open connections to multiple addresses
 - Platform : WINDOW98 /+ on IBM PC
6. Target

- **2002 FIFA World Cup Korea-Japan™**
 - May. 31. ~ June. 30. 2002

- **Objective**
 - Selection of MVP player in 2002 world-cup games
 - Demonstrating electronic voting system to the world in easy and friendly manner

- **Participants**
 - Korea : IRIS, InsoSoft, KISTI, Samsung Secui.com, STI
 - Japan : NTT, Univ. of Tokyo

- **Web-page**
 - http://mvp.worldcup2002.or.kr
7. Summary

- **Experimental Design of Internet voting system**
 - User friendly and secure Internet voting system
 - Applying PKI to the voting system

- **Expected Results**
 - cyber MVPs of 2002 FIFA World Cup Korea-Japan™
 - Contribution to the development of information security related-industry such as PKI.
 - Valuable lessons to the planned Internet voting systems such as Cybervote in EC.

- **Help**
 - No hacking from crypto society.
 - Any comments are welcome.
 - Social engineering, political problem, etc