
Introduction to Information Security

Lecture 6: Public Key Cryptography

2007. 6.

Prof. Byoungcheon Lee
sultan (at) joongbu . ac . kr

Information and Communications University

2

Contents

1. Introduction to PKC

2. Hard problems

 IFP

 DLP

3. Public Key Encryptions

 RSA

 ElGamal

4. Digital Signatures

 DSA, KCDSA

 Schnorr

5. Signcryption

6. Key Exchange

7. Elliptic Curve Cryptosystems

8. Certification and PKI

3

1. Introduction to PKC

4

Key Distribution Problem of Symmetric Key Crypto

 In symmetric key cryptosystems

 Over complete graph with n nodes, nC2 = n(n-1)/2 pairs secret keys are

required.

 (Example) n=100, 99 x 50 = 4,950 keys are required

 Problem: Managing large number of keys and keeping them in a secure

manner is difficult

b

a

c d

e
Secret keys are required between

(a,b), (a,c), (a,d), (a,e), (b,c),

(b,d), (b,e), (c,d), (c,e), (d,e)

5

Public Key Cryptography - Concept

In Encryption

 Anyone can lock (using the public key)

 Only the receiver can unlock (using the private key)

In Digital Signature

 Only the signer can sign (using the private key)

 Anyone can verify (using the public key)

Using a pair of keys which have special mathematical relation.

Each user needs to keep securely only his private key.

All public keys of users are published.

6

Symmetric key vs. Asymmetric Key Crypto

Symmetric Asymmetric

Key relation

Enc. Key

Dec. key

Algorithm

Example

Key Distribution

Number of keys

E/D Speed

Enc. key = Dec. key

Secret

Secret

Secret Public

SKIPJACK AES

Required (X)

Many (X)

Fast(O)

Enc. Key  Dec. key

Public, {private}

Private, {public}

Public

RSA

Not required (O)

Small (O)

Slow(X)

O : merit

X : demerit

7

Public Key Cryptography - Concept

 One-way functions

 Given x, easy to compute y=f(x).

 Difficult to compute x=f-1(y) for given y.

x,
domain parameters

y = f(x)
domain parameters f

easy

hard

Ex) f(x)= 7x21 + 3x3 + 13x2+1 mod (215-1)

8

Public Key Cryptography - Concept

 Trapdoor one-way functions

 Given x, easy to compute f(x)

 Given y, difficult to compute f-1(y) in general

 Easy to compute f-1(y) for given y to only who knows certain information

(which we call trapdoor information)

x,
domain parameters

y = f(x)
domain parameters f

easy

hard

trapdoor info.
private key public key

But, easy if trapdoor info. is given.

9

Public Key Cryptography - Concept

 Concept

 invented by Diffie and Hellman in 1976, “New directions in Cryptography”,

IEEE Tr. on IT. ,Vol. 22, pp. 644-654, Nov., 1976.

 Overcome the problem of secret key sharing in symmetric cryptosystems

 Two keys used: public key & private key

 Also known as two-key cryptography or asymmetric cryptography

 Based on (trapdoor) one-way function

x,
domain parameters

y = f(x)
domain parameters f

easy

hard

trapdoor info.
private key public key

But, easy if trapdoor info. is given.

10

Public Key Cryptography

 Keys

 A pair of (Public Key, Private Key) for each user

 Public keys must be publicly & reliably available

 Encryption schemes

 Encrypt with peer‟s Public Key; Decrypt with its own Private Key

 RSA, ElGamal

 Digital signature schemes

 Sign with its own Private Key; verify with peer‟s Public Key

 RSA, DSA, KCDSA, ECDSA, EC-KCDSA …

 Key exchange schemes

 Key transport or key agreement for secret-key crypto.

 RSA; DH(Diffie-Hellman), ECDH

 All problems clear?

 New Problem : How to get the right peer‟s Public Key?

 Public key infrastructure (PKI) required

 Certificate is used to authenticate public key

11

Public Key Cryptosystems

 Public key cryptography is based on hard problems.

 Encryption schemes

 RSA: based on IFP

 ElGamal: based on DLP

 Signature schemes

 Signature schemes with message recovery: RSA

 Signature with appendix: ElGamal, DSA, KCDSA

 Key exchange schemes

 Key transport: a trusted entity TA generates and

distributes key

 Key agreement: Diffie-Hellman key agreement. Both entity

take part in the key agreement process to have an agreed

key

12

Public Key Encryption vs. Digital Signature

E D

Alice’s Public Key

Plaintext

M

Ciphertext

C

Plaintext

M

Alice’s Private Key

Alice Bob

Authentic channel

S V

Bob’s private Key

Plaintext

M

Message + Signature

M + s

Yes / No

Bob’s public Key

Alice Bob

Authentic channel

13

Public Key Cryptosystems – History

 RSA scheme (1978)

 R.L.Rivest, A.Shamir, L.Adleman, “A Method for Obtaining

Digital Signatures and Public Key Cryptosystems”,CACM,

Vol.21, No.2, pp.120-126,Feb,1978

 McEliece scheme (1978)

 Rabin scheme (1979)

 Knapsack scheme (1979-): Merkle-Hellman, Chor-Rivest

 ElGamal scheme (1985)

 Elliptic Curve Cryptosystem (1985): Koblitz, Miller

 Non-Abelian group Cryptography (2000): Braid group

14

2. Hard Problems

IFP (Integer Factorization Problem)

DLP (Discrete Logarithm Problem)

15

Integer Factorization Problem (IFP)

 Problem: Given a composite number n, find its prime factors

 Application: Used to construct RSA-type public key cryptosystems

 Algorithms to solve IFP (probabilistic sub-exponential algorithms)

 Quadratic sieve

 General Number Field Sieve

easy

Primes p, q n = pq
hard

16

Quadratic Sieve

 Factor n (=pq) using the quadratic sieve algorithm

 Basic principle:

Let n be an integer and suppose there exist integers x and y

with x2 = y2 (mod n), but x ±y (mod n). Then gcd(x-y,n) gives

a nontrivial factor of n.

 Example

Consider n=77

72=-5 mod 77, 45=-32 mod 77

72*45 = (-5)*(-32) mod 77

23*34*5 = 25*5 mod 77

92 = 22 mod 77

gcd(9-2,77)=7, gcd(9+2,77)=11

77=11*7 Factorization

17

Quadratic Sieve

 Example: factor n=3837523.

 (textbook p. 183)

Observe

93982 = 55 x 19 (mod 3837523)

190952 = 22 x 5 x 11 x 13 x 19 (mod 3837523)

19642 = 32 x 133 (mod 3837523)

170782 = 26 x 32 x 11 (mod 3837523)

Then we have

(9398 x 19095 x 1964 x 17078)2 = (24x32x53x11x132x19)2

22303872 = 25867052 (mod 3837523)

gcd(2230387-2586705, 3837523)=1093

3837523 / 1093 = 3511

3837523 = 1093 x 3511  succeed !

18

Quadratic Sieve

 Quadratic Sieve algorithm : find factors of integer n

1. Initialization: a sequence of quadratic residues Q(x)=(m+x)2-n

is generated for small values of x where m=sqrt(n).

2. Forming the factor base: the base consists of small primes.

FB={-1,2,p1,p2,…,pt-1}

3. Sieving: the quadratic residues Q(x) are factored using the

factor base till t full factorizations of Q(x) have been found.

4. Forming and solving the matrix: Find a linear combination of

Q(x)‟s which gives the quadratic congruence. The

congruence gives a nontrivial factor of n with the probability

½ .

 Exercise 1: Find factors of n=4841 using the quadratic sieve algorithm

http://www.answers.com/topic/quadratic-sieve?cat=technology

19

General Number Field Sieve (GNFS)

 GNFS (general number field sieve) is the most efficient

algorithm known for factoring integers larger than 100 digits.

 Asymptotic running time: sub-exponential

 
1/ 3 2 / 3(1.526 (1))(ln) (ln ln)1

[,1.526]
3

o n n

nL O e 

)(],[
1)ln(ln)(ln 




 nnc

n eOcL

Complexity of algorithm

• If =0, polynomial time algorithm

• If >=1, exponential time algorithm

• If 0<<1, sub-exponential time algorithm

ln n : number of bits of n

RSA Challenge

Digits Year MIPS-year Algorithm

RSA-100

RSA-110

RSA-120

RSA-129

RSA-130

RSA-140

RSA-155

RSA-160

RSA-174

RSA-200

„91.4.

„92.4.

„93.6.

„94.4.(AC94)

„96.4.(AC96)

„99.2 (AC99)

‟99.8

‟03.1

‟03.12

„05.5

7

75

830

5,000

?

?

8,000

Q.S.

Q.S.

Q.S.

Q.S.

NFS

NFS

GNFS

Lattice Sieving + HW

Lattice Sieving + HW

Lattice Sieving + HW

•MIPS : 1 Million Instruction Per Second for 1 yr = 3.1 x 1013 instruction

•http://www.rsasecurity.com./rsalabs, expectation : 768-bit by 2010, 1024-bit by 2018

RSA Challenge Solution

RSA-160
Date: Tue, 1 Apr 2003 14:05:10 +0200

From: Jens Franke

Subject: RSA-160

We have factored RSA160 by gnfs. The prime factors are:

p=45427892858481394071686190649738831\ 656137145778469793250959984709250004157335359

q=47388090603832016196633832303788951\ 973268922921040957944741354648812028493909367

 http://www.loria.fr/~zimmerma/records/rsa160

http://www.loria.fr/~zimmerma/records/rsa200

RSA-200
Date: Mon, 9 May 2005 18:05:10 +0200 (CEST)

From: Thorsten Kleinjung

Subject: rsa200

We have factored RSA200 by GNFS. The factors are

p=35324619344027701212726049781984643686711974001976\ 25023649303468776121253679423200058547956528088349

and

q=79258699544783330333470858414800596877379758573642\ 19960734330341455767872818152135381409304740185467

22

 Problem:

Given g, y, and prime p, find an integer x, if any, such that

y = gx mod p (x=loggy)

 Application: Used to construct Diffie-Hellman & ElGamal-type

public key systems: DH, DSA, KCDSA …

 Algorithms to solve DLP:

 Shank‟s Baby Step Giant Step

 Index calculus

Discrete Logarithm Problem (DLP)

easy y = gx mod p

hard
x = logg y

Given g, x, p

Given g, y, p

23

 Problem: find an integer x, if any, such that y = gx mod p (x=loggy)

 Algorithm

Shank‟s Baby Step, Giant Step algorithm

pygg Nkj mod

1. Choose an integer  1 pN

2. Computes Njpg j 0for ,mod

3. Computes Nkpyg Nk  0for ,mod

4. Look for a match between the two lists. If a match is found,

Then
Nkjx ggy 

We solve the DLP. Nkjx 

Baby Step

Giant Step

24

Shank‟s Baby Step, Giant Step algorithm

Match found!

Baby Step

Giant Step

pygg Nkj mod

25

 Problem: find an integer x, if any, such that y = gx mod p (x=loggy)

 Algorithm

Index Calculus

1. Choose a factor base S={p1,p2,…pm}

 which are primes less than a bound B.

2. Collect linear relations
1. Select a random integer k and compute gk mod p
2. Try to write gk as a product of primes in S

 mod , then log mod 1iak

i i g i

ii

g p p k a p p  

3. Find the logarithms of elements in S solving the linear relations

4. Find x

 For a random r, compute ygr mod p and try to write it as a

 product of primes in S.

mod , then log mod 1ibr

i i g i

ii

yg p p x r b p p    

26

 Example: Let p=131, g=2, y=37. Find x=log237 mod 131

 Solution
Let B=10, S={2,3,5,7}

Index Calculus

21 = 2 mod 131

28 = 53 mod 131

212 = 5 * 7 mod 131

214 = 32 mod 131

234 = 3 * 52 mod 131

1 = log22 mod 130

8 = 3*log25 mod 130

12= log25 + log27 mod 130

14 = 2*log23 mod 130

34 = log23 + 2*log25 mod 130

log22 = 1

log25 = 46

log27 = 96

log23 = 72

37 * 243 = 3 * 5 * 7 mod 131

Log237 = -43 + log23 + log25 + log27 mod 130 = 41

241 mod 131 = 37 Solution :

 Exercise 2: Let p=809. Find log3525 mod 809.

27

 Complexity of best known algorithm for solving DLP:

 Complexities of solving IFP and DLP are similar

Discrete Logarithm Problem (DLP)

 
1/ 3 2 / 3(1.923 (1))(ln) (ln ln)1

[,1.923]
3

o p p

pL O e 

28

3. Public Key Encryption

RSA

ElGamal

29

Shamir Rivest Adleman

RSA Public Key Systems

 RSA is the first public key cryptosystem

 Proposed in 1977 by Ron Rivest, Adi Shamir and Leonard

Adleman at MIT

 It is believed to be secure and still widely used

30

RSA Public Key Systems

 Key generation

 Choose two large (512 bits or more) primes p & q

 Compute modulus n = pq, and (n) = (p-1)(q-1)

 Pick an integer e relatively prime to (n), gcd(e, (n))=1

 Compute d such that ed = 1 mod (n)

 Public key (n, e) : publish

 Private key d : keep secret (may discard p & q)

 Special Property

 (me mod n)d mod n = (md mod n)e mod n for 0 < m < n

 Encryption / Decryption

 E: c = me mod n for 0 < m < n

 D: m = cd mod n

 Proof) Cd = (Me)d = Med = Mk(n) +1 = M {M(n)}k = M

31

RSA as a Trapdoor One-way Function

Message

m

Ciphertext

c

c = f(m) = me mod n

m = f-1(c) = cd mod n

Public key

Private key

(trapdoor information)

n = pq (p & q: primes)

ed = 1 mod (p-1)(q-1)

32

RSA Public Key Systems

 Example:

Key Generation

– p=3, q=11

– n = pq = 33, (n) =(p-1)(q-1) = 2 x10 = 20

– e = 3 s.t. gcd(e, (n))=(3,20)=1

– Choose d s.t. ed =1 mod (n), 3d = 1 mod 20, d=7

– Public key ={e,n}={3,33}, private key ={d}={7}

Encryption

– M =5

– C = Me mod n = 53 mod 33 =26

Decryption

– M =Cd mod n = 267 mod 33= 5

33

RSA Public Key Systems

 Exercise 3: Provide an example of RSA key generation,

encryption, and decryption for

1) p=17, q=23 (by hand calculation)

2) p=2357, q=2551 (using big number calculator)

3) p=885320963, q=238855417 (using big number calculator)

1. Key generation

2. Encryption

3. Decryption

34

Selecting Primes p and q for RSA

 How to select primes p and q ?

1. |p|  |q| to avoid ECM (Elliptic Curve Method for factoring)

2. p-q must be large to avoid trial division

3. p and q are strong prime

 p-1 has large prime factor r (pollard‟s p-1)

 p+1 has large prime factor (William‟s p+1)

 r-1 has large prime factor (cyclic attack)

35

Security of RSA

 Common Modulus attack:

 If multiple entities share the same modulus n=pq with different

pairs of (ei, di), it is not secure. Do not share the same modulus!

 Cryptanalysis: If the same message M was encrypted to

different users

 User u1 : C1 = Me1 mod n

 User u2 : C2 = Me2 mod n

If gcd(e1,e2)=1, there are a and b s.t. ae1 + be2 = 1 mod n

Then,

(C1)
a(C2)

b mod n = (Me1)a(Me2)b mod n = Mae1+be2 mod n = M mod n

36

Security of RSA

 Cycling attack

If f(f(…f(M)))=f(M) where f(M) = Me mod n ?

If a given ciphertext appears after some iterations, we can

recover the plaintext at collusion point.

Let C=Me mod n

If (((Ce)e)…)e mod n = Ce^k mod n = C, then Ce^(k-1) mod n = M

 Multiplicative attack (homomorphic property of RSA)

(M1
e) (M2

e) mod n = (M1 x M2)
e mod n

37

Attack on RSA Implementations

 Timing attack: (Kocher 97)

 The time it takes to compute C
d
 (mod N)

 can expose d.

 Power attack: (Kocher 99)

 The power consumption of a smartcard while

 it is computing C
d
 (mod N) can expose d.

 Faults attack: (BDL 97)

 A computer error during C
d
 (mod N)

 can expose d.

38

Security of Public Key Encryption Schemes

 Security goals

 One-wayness (OW): the adversary who sees a ciphertext is

not able to compute the corresponding message

 Indistinguishability (IND): observing a ciphertext, the

adversary learns nothing about the plaintext. Also known as

semantic security.

 Non-malleability (NM): observing a ciphertext for a message

m, the adversary cannot derive another ciphertext for a

meaningful plaintext m‟ related to m

 Original RSA encryption is not secure

 In IND: deterministic encryption

 In NM: for example, from c=me, c‟ = 2ec = (2m)e is easily

obtained. It cannot be used in bidding scenario.

39

Security of Public Key Encryption Schemes

 Indistinguishability

m0, m1
bR{0,1}

PKE(pk, sk)

Challenge: C=E(mb)

Guess b?

The adversary win if he guess b correctly with a
probability significantly greater than 1/2

40

Security of Public Key Encryption Schemes

 Assume the existence of Decryption Oracle

 Mimics an attacker‟s access to the decryption device

 Attack models

 Chosen Plaintext Attack (CPA): the adversary can encrypt

any plaintext of his choice. In public key encryption this is

always possible.

 Non-adaptive Chosen Ciphertext Attack (CCA1): the attacker

has access to the decryption oracle before he sees a

ciphertext that he wishes to manipulate

 Adaptive Chosen Ciphertext Attack (CCA2): the attacker has

access to the decryption oracle before and after he sees a

ciphertext c that he wishes to manipulate (but, he is not

allowed to query the oracle about the target ciphertext c.)

RSA Padding

 RSA encryption without padding

 Deterministic encryption (same plaintext  same ciphertext)

 Multiplicative property: m1
e . m2

e = (m1m2)
e mod n

 Lots of attacks possible

 Redundancy checking is essential for security

 RSA encryption with OAEP

 RSA encryption after OAEP (Optimal Asymmetric Encryption

Padding)

 Proposed by Bellare and Rogaway

 Probabilistic encoding of message before encryption

 RSA becomes a probabilistic encryption

 Secure against IND-CCA2

42

RSA with OAEP

 OAEP  RSA encryption

s=mG(r)

t=rH(s)

r=tH(s)

m=sG(r)

Encryption padding

Decryption padding

c=E(s,t) RSA encryption

 RSA decryption  OAEP

(s,t)=D(c) RSA decryption

+

m r

s t

+ H

G

n-bit message l-bit random value

G

H

Hash function

(Random oracle)

r : l-bit random value

OAEP looks like a kind of Feistel network.

43

RSA Encryption with RSA-OAEP Padding

EM =

Padding

string:all 0x00

mLen 

k - 2hLen - 2

 Parameter : Hash, MGF

 Input : M, L, (n, e)

Random string,

seedLen = hLen

MGF(Seed, Len) =

 Hash(Seed || 0) ||

 Hash(Seed || 1) ||

 . . .

 Hash(Seed || t)

DB =



Hash L M

M 01 lHash PS

MaskedDB

MGF

Seed

masked

Seed

MGF 

00

C = (EM)e mod n

(Optional) Label

In PKCS #1 v2.0, v2.1

44

Diffie-Hellman / ElGamal-type Systems

 Domain parameter generation

 Based on the hardness of DLP

 Generate a large (1024 bits or more) prime p

 Find a generator g that generates the cyclic group Zp
*

 Domain parameter = {p, g}

 Key generation

 Pick a random integer x  [1, p-1]

 Compute y = gx mod p

 Public key (p, g, y) : publish

 Private key x : keep secret

 Applications

 Public key encryption

 Digital signatures

 Key agreement

45

ElGamal Encryption Scheme

 Keys & parameters

 Domain parameter = {p, g}

 Choose x  [1, p-1] and compute y = gx mod p

 Public key (p, g, y)

 Private key x

 Encryption: m  (C1, C2)

 Pick a random integer k  [1, p-1]

 Compute C1 = gk mod p

 Compute C2 = m  yk mod p

 Decryption

 m = C2  C1
-x mod p

 C2  C1
-x = (m  yk)  (gk)-x = m  (gx)k  (gk)-x = m mod p

46

ElGamal Encryption Scheme -- Example

 Key Generation

 Let p=23, g=7

 Private key x=9

 Public key y = gx mod p = 79 mod 23 = 15

 Encryption: m  (C1, C2)

 Let m=20

 Pick a random number k=3

 Compute C1 = gk mod p = 73 mod 23 = 21

 Compute C2 = m  yk mod p = 20  153 mod 23 = 20  17 mod

23 = 18

 Send (C1 ,C2) = (21,18) as a ciphertext

 Decryption

 m = C2 / C1
x mod p = 18 / 219 mod 23 = 18 / 17 mod 23 = 20

47

4. Digital Signatures

RSA, ElGamal, DSA, KCDSA, Schnorr

48

Digital Signature

 Digital Signature

 Electronic version of handwritten signature on

electronic document

 Signing using private key (only by the signer)

 Verification using public key (by everyone)

 Hash then sign: sig(h(m))

 Efficiency in computation and communication

49

Digital Signature

 Security requirements for digital signature

 Unforgeability (위조 방지)

 User authentication (사용자 인증)

 Non-repudiation (부인 방지)

 Unalterability (변조 방지)

 Non-reusability (재사용 방지)

 Services provided by digital signature

 Authentication

 Data integrity

 Non-Repudiation

50

 Digital Signature

 Combine Hash with Digital Signature and use PKC

 Provide Authentication and Non-Repudiation

 RSA; DSA, KCDSA, ECDSA, EC-KCDSA

Digital Signature

Signature

Sender‟s

Private

Key

Hash Algorithm

Hash Hash Algorithm

Hash1 Hash2

Sender‟s

Public

Key

SEND

Signature

Signature

S
ig

n
in

g

V
e

rify
in

g

51

RSA Signature

 Key generation

 Choose two large (512 bits or more) primes p & q

 Compute modulus n = pq, and (n) = (p-1)(q-1)

 Pick an integer e relatively prime to (n), gcd(e, (n))=1

 Compute d such that ed = 1 mod (n)

 Public key (n, e) : publish

 Private key d : keep secret (may discard p & q)

 Signing / Verifying

 S: s = md mod n for 0 < m < n

 V: m =? se mod n

 S: s = h(m)d mod n --- hashed version

 V: h(m) =? se mod n

 RSA signature without padding

 Deterministic signature, no randomness introduced

52

RSA Signature

 RSA signature forgery: Attack based on the multiplicative

property of RSA.

y1 = (m1)d

y2 = (m2)d, then

(y1y2)e = m1m2

Thus y1y2 is a valid signature of m1m2

 This is an existential forgery using a known message attack.

53

RSA Signing with RSA-PSS Padding

M’ =

EM =

 Parameter : Hash, MGF, sLen

 Input : M, (n, d)

salt mHash Pad

MaskedDB

MGF 

Hash

H

salt DB =

bc

Pad = 0x00 00 00 00 00 00 00 00

(8 octets of all zeros) Hash

M

01 PS

Padding string:

all 0x00

S = (EM)d mod n

Random octet string

of sLen octets

emLen = (|n|-1)/8

54

ElGamal Signature Scheme

 Keys & parameters

 Domain parameter = {p, g}

 Choose x  [1, p-1] and compute y = gx mod p

 Public key (p, g, y)

 Private key x

 Signature generation: (r, s)

 Pick a random integer k  [1, p-1]

 Compute r = gk mod p

 Compute s such that m = xr + ks mod p-1

 Signature verification

 yrrs mod p =? gm mod p

- If equal, accept the signature (valid)

- If not equal, reject the signature (invalid)

 No hash function…

55

Digital Signature Algorithm (DSA)

Private : x

Public : p, q, g, y

 p : 512 ~ 1024-bit prime

 q : 160-bit prime, q | p-1

 g : generator of order q

 x : 0 < x < q

 y = gx mod p
 Signing

r = (gk mod p) mod q

s = k-1(SHA1(m) + xr) mod q

 Verifying

m, (r,s)

Pick a random k s.t. 0 < k < q

w = s-1 mod q

u1 = SHA1(m)  w mod q

u2 = r  w mod q

v = (gu1  yu2 mod p) mod q

v =? r

m, (r,s)

56

Korean Certificate-based Digital Signature Algorithm (KCDSA)

Private : x

Public : p, q, g, y
 z=h(Cert_Data)

 p : 768+256k (k=0 ~ 5) bit prime

 q : 160+32k (k=0~3) bit prime, q | p-1

 g : generator of order q

 x : 0 < x < q

 y = gx mod p, x = x-1 mod q

 Signing

r = HAS160(gk mod p)

e = r  HAS160(z || m)

s = x(k - e) mod q

 Verifying

m, (r,s)

Pick a random k s.t. 0 < k < q

e = r  HAS160(z || m)

v = ys  ge mod p

HAS160(v) =? r

m, (r,s)

57

Schnorr Signature Scheme

 Domain parameters

 p = a large prime (~ size 1024 bit), q = a prime (~size 160 bit)

 q = a large prime divisor of p-1 (q | p-1)

 g = an element of Zp of order q, i.e., g  1 & gq = 1 mod p

 Considered in a subgroup of order q in modulo p

 Keys

 Private key x R [1, q-1] : a random integer

 Public key y = gx mod p

 Signature generation: (r, s)

 Pick a random integer k R [1, q-1]

 Compute r = h(gk mod p, m)

 Compute s = k – xr mod q

 Signature verification

 r =? h(yrgs mod p, m)

58

Security of Digital Signature Schemes

 Security goals

 Total break: adversary is able to find the secret for signing,

so he can forge then any signature on any message.

 Selective forgery: adversary is able to create valid

signatures on a message chosen by someone else, with a

significant probability.

 Existential forgery: adversary can create a pair (message,

signature), s.t. the signature of the message is valid.

59

Security of Digital Signature Schemes

 Attack models

 Key-only attack: Adversary knows only the verification

function (which is supposed to be public).

 Known message attack: Adversary knows a list of

messages previously signed by Alice.

 Chosen message attack: Adversary can choose what

messages wants Alice to sign, and he knows both the

messages and the corresponding signatures.

60

5. Signcryption

Signature + Encryption

61

What is Signcryption?

 Provides the functions of

 digital signature : unforgeability & non-repudiation

 public key encryption : confidentiality

 Two birds in one stone

 Has a significantly smaller computation & communication cost

compared with traditional digital envelop (signature-then-

encryption)

Cost (signcryption) << Cost (signature) + Cost (encryption)

62

Signcryption – system setup

• Public to all

– p : a large prime

– q : a large prime

 factor of p-1

– g : 0<g<p & with

 order q mod p

– G: 1-way hash

– H: 1-way hash

– (E,D) :

symmetric key encryption &

decryption algorithms

: secret key

: public key

 (mod)a

a

a

x

a

x

y

y g p

Alice's keys:

: secret key

: public key

 (mod)b

b

b

x

b

x

y

y g p

Bob's keys:

1. () mod

2. ()

3. ()

4. Return if

 (, ,)

5. Return "invalid" otherwise

bs xr

a

k

w y g p

k G w

m D c

m

r H m bind_info w


 







Unsigncryption by Bob :

m (c,r,s) m (c,r,s)

1. Pick at random {1,..., 1}

2. mod

3. ()

4. (, ,)

5. /() mod

6. ()

7. return (, ,)

b

R

x

a

k

x q

w y p

k G w

r H m bind_info w

s x r x q

c E m

c r s

 







 



Signcryption by Alice:

Signcryption – 1st Example

1. () mod

2. ()

3. ()

4. Return if

 (, ,)

5. Return "invalid" otherwise

b
r s x

a

k

w g y p

k G w

m D c

m

r H m bind_info w


 







Unsigncryption by Bob :

m (c,r,s) m (c,r,s)

1. Pick at random {1,..., 1}

2. mod

3. ()

4. (, ,)

5. /(1) mod

6. ()

7. return (, ,)

b

R

x

a

k

x q

w y p

k G w

r H m bind_info w

s x x r q

c E m

c r s

 







  



Signcryption by Alice:

Signcryption – 2nd Example

1. () mod

2. ()

3. ()

4. Return if

 (, ,)

5. Return "invalid" otherwise

b
r xs

a

k

w g y p

k G w

m D c

m

r H m bind_info w

 







Unsigncryption by Bob :

m (c,r,s) m (c,r,s)

1. Pick at random {1,..., 1}

2. mod

3. ()

4. (, ,)

5. () mod

6. ()

7. return (, ,)

b

R

x

a

k

x q

w y p

k G w

r H m bind_info w

s x x r q

c E m

c r s

 







  



Signcryption by Alice:

Signcryption – 3rd Example

• based on DL on an Elliptic Curve

– Zheng, CRYPTO‟97

– Zheng & Imai IPL 1998

• based on other sub-groups (e.g. XTR)

– Lenstra & Verheul, CRYPTO2000

– Gong & Harn, IEEE-IT 2000

– Zheng, CRYPTO‟97

• based on DL on finite field

– Zheng, CRYPTO‟97

• based on factoring / residuosity

– Steinfeld & Zheng, ISW2000

– Zheng, PKC2001

M
o
re efficien

t

Major Instantiations of Signcryption

(a) Signcryption

 based on DL

m

sig

EXP=1+1.17

(c) Signature-then-Encryption

 based on DL

m

sig

gx

EXP=3+2.17

(b) Signature-then-Encryption

 based on RSA

m

sig

EXP=2+2

k
eb

Signcryption vs. Signature-then-Encryption

0

1000

2000

3000

4000

5000

6000

7000

8000

1024 2048 4096 8190

RSA sign-enc

Schnorr + ELGamal

DL Signcryption

|p|=|n|

of multiplications

DL-based Signcryption vs. Signature-then-Encryption

0

5000

10000

15000

20000

25000

1024 2048 4096 8190

RSA sign-enc

Schnorr + ElGamal

DL Signcryption

comm. overhead

 (# of bits)

|p|=|n|

DL-based Signcryption vs. Signature-then-Encryption

• Proofs for the confidentiality and unforgeability of signcryption

– Confidentiality --- Providing a reduction

• from breaking the security of signcryption with respect to
adaptive chosen ciphertext attacks in the flexible public key
model

• to breaking the GAP Diffie-Hellman assumption, in the random
oracle model

– Unforgeability --- Providing a reduction

• from breaking the unforgeability of signcryption against
adaptive chosen message attacks

• to the Discrete Logarithm problem, in the random oracle model

Security Proofs

71

6. Key Exchange

Diffie-Hellman

72

Diffie-Hellman Key Agreement Scheme

choose Xa  [1, p-1]

Ya = g
Xa mod p

Ya

choose Xb  [1, p-1]

Yb = g
Xb mod p

Yb

compute the shared key

Ka = Yb
Xa = g

XbXa mod p

compute the shared key

Kb = Ya
Xb = g

XaXb mod p

Domain Parameters

p, g

73

Diffie-Hellman Problem

 Computational Diffie-Hellman (CDH) Problem

Given Ya = g
Xa mod p and Yb = g

Xb mod p,

compute Kab = g
XaXb mod p

 Decision Diffie-Hellman (DDH) Problem

Given Ya = g
Xa mod p and Yb = g

Xb mod p,

distinguish between Kab = g
XaXb mod p and a random string

 Discrete Logarithm Problem (DLP)

Given Y = g
X mod p, compute X = logbY.

The Security of the Diffie-Hellman key agreement depends on

the difficulty of CDH problem.

74

Man in the Middle Attack in Diffie-Hellman Key Agreement

Xb : private

Yb = g
Xb : public

Yb Yc

Xa : private

Ya = g
Xa : public

Yc = g
Xc for some Xc Yc Ya

Bob computes the
session key

Kb = Yc
Xb = g

XcXb

Alice computes the
session key

Ka = Yc
Xa = g

XcXa

Adversary computes
the both session keys

Kb = Yb
Xc = g

XcXb

Ka = Ya
Xc = g

XcXa

Problem comes from

no authentication

75

Diffie-Hellman Key Agreement using Certified Key

choose Xa  [1, p-1]

Ya = g
Xa mod p

choose Xb  [1, p-1]

Yb = g
Xb mod p

compute the shared key

Ka = Yb
Xa = g

XbXa mod p

compute the shared key

Kb = Ya
Xb = g

XaXb mod p

Domain Parameters

p, g

Certified

key

Ya and Yb

•Interaction is not required

•Agreed key is fixed, long-term use

76

MTI Protocols --

choose Xa  [1, p-1]

Ya = g
Xa mod p

choose Xb  [1, p-1]

Yb = g
Xb mod p

compute the shared key

Ka = Yb
ka Tb

Xa = g
Xbka g

kbXa

compute the shared key

Kb = Ya
kb Ta

Xb = g
Xakb g

kaXb

Domain Parameters

p, g

Certified

key

Ya and Yb

by Matsumoto, Takashima, Imai

Ta

Tb

Choose ka  [1, p-1]

Ta = g
ka mod p

choose kb  [1, p-1]

Tb = g
kb mod p

77

7. Elliptic Curve Cryptosystem

78

Elliptic Curve (1)

 Weierstrass form of Elliptic Curve

 y2 + a1 xy + a3 = x3 + a2 x
2 + a4 x + a6

 Example (over rational field)

 y2 = x3 – 4x + 1

 E(Q)

 = {(x,y)  Q2 | y2 = x3 – 2x + 2} U OE

 P = (2, 1), –P = (2, –1)

 [2]P = (12 , -41)

 [3]P = (91/25, 736/125)

 [4]P = (5452/1681, -324319/68921)

P
Q

P + Q
-Q

P - Q

79

Elliptic Curve (2)

 Example (over finite field GF(p) : p = 13)

 P = (2,1), –P = (2, 12), [2]P = (12, 11)

 [3]P = (0, 1), [4]P = (11, 12), …… , [18]P = OE

 Hasse‟s Theorem : p – 2p  # of E(p)  p + 2p

 Scalar multiplication: [d]P

 Elliptic Curve Discrete Logarithm

 Base of Elliptic Curve Cryptosystem (ECC)

y = gx mod p Q = [d]P

Find x for given Y Find d for given Q

80

Elliptic Curve Cryptosystems

 Advantages

 Breaking PKC over Elliptic Curve is much harder

 We can use much shorter key

 Encryption/Decryption is much faster than that of other PKCs

 It is suitable for restricted environments like mobile phone,
smart card

 Disadvantages

 It‟s new technique  There may be new attacks

 Too complex to understand

 ECC is a minefield of patents

: e.g. US patents

4587627/739220 – Normal Basis, 5272755 – Curve over GF(p)

5463690/5271051/5159632 – p=2^q-c for small c, etc…

81

Key Sizes and Algorithms

 System strength, Symmetric Key strength, Public Key strength

must be consistently matched for any network protocol usage.
 Selection Rules

 Determine symmetric key sizes : n

 Symmetric Cipher  Key exchange Algorithm  Authentication Algorithm

Sym. RSA/DH ECC

64 512 -

90 1024 160

120 2048 210

128 2304 256

Sym. RSA/DH ECC

56 430 112

80 760 160

96 1020 192

128 1620 256

From Peter Gutmann’s tutorial From RSA’s Bulletin (2000. 4. No 13)

 Recommendation for RSA/ECC

 512/112-bit : only for micropayment/smart card

 1024/160-bit : for short term (1-year) security

 2048/256-bit : for long term security (CA,RA)

82

Implementation Results

 RSA Encryption/Decryption

Encryption Decryption

PKCS#1-v1.5 1.49 ms 18.05 ms

PKCS#1-OAEP 1.41 ms 18.09 ms

 Signature

Signing Verifying

PKCS#1-v1.5 18.07 ms 1.24 ms

PKCS#1-PSS 18.24 ms 1.28 ms

DSA with SHA1 2.75 ms 9.85 ms

KCDSA with HAS160 2.42 ms 9.55 ms

 Modular Exponentiation vs. Scalar Multiplication of EC

M.E. (1024-bit) S.M. (GF(2162)) S.M. (GF(p))

52.01 ms 2.24 ms 1.17 ms

83

Implementation Environments

 RSA Encryption/Signature

 N : 1024 bits, public exponent : 65537 = 216 + 1

 Decryption/Signing uses Chinese Remainder Theorem (CRT)

: CRT is roughly 3 times faster

 DSA/KCDSA

 p : 1024-bit prime, q : 160-bit subprime

 Signing uses LL-method

 Verifying uses double-exponentiation

 Modular Exponentiation vs. Scalar Multiplication of EC

 M.E./S.M. uses Window-method

 In the same security level, ECC is much faster that RSA/DSA

PIII 450MHz

Widows 98

MSVC++ 6.0

 with assembly

84

8. Certification and PKI

85

Key Distribution Center (KDC)

(1)

(2)

K

(1)

(2)
K

(1)

(2) K

(3)
K

(3)

K (4)

 Rely on the absolute security of KDC

 Ease of centralized management

 Suitable for enterprise network security

 But not Scalable; KDC is a potential Bottleneck

86

Diffie-Hellman Key Exchange and Message Encryption

Bob’s

Public Key/Private Key

SEND

SEND
Diffie-Hellman

Algorithm

Alice’s

Public Key/Private Key

Encryption
Encrypted

Message

Diffie-Hellman

Algorithm

Shared Secret Key IDENTICAL !! Shared Secret Key

Decryption
Encrypted

Message

SEND

Encrypted

Message

Symmetric

Key

Cryptosystem

Symmetric

Key

Cryptosystem

87

Digital Enveloping : Key Transport + Encryption

Bob’s

Public Key/Private Key

Alice’s

Public Key

Randomly

Generated

Session Key

Encryption

Encryption

Hash Algorithm

Hash

Signature

S
ig

n
in

g

Encrypted

Session Key

Encrypted

Message
Encrypted

Session Key

Encrypted

Message

SEND

Signature

Symmetric Key

Cryptosystem

Public Key

Cryptosystem

88

Bob’s

Public Key

Decryption

Alice’s

Public Key/Private Key

Signature

Decryption

Hash Algorithm

Hash1 Hash2

V
e

rify
in

g

Signature Encrypted

Session Key

Encrypted

Message

RECEIVE

Encrypted

Session Key

Encrypted

Message

Digital Enveloping : Key Recovery + Decryption

89

How to Guarantee Authenticity of Peer Public Key?

 For secure use of public key systems,
Everyone should be able to obtain the public key of any

communication peer that he wants to communicate with, in

such a way that he can be sure that the obtained public key is

the correct and right public key of the peer

How to guarantee that the public key obtained is the right

one ?

How to guarantee that the public key obtained is authentic ?

 Using Certificate !

90

What is a Digital Certificate?

Issuer (CA)

Subject (Alice)

Valid period

Alice‟s pub. Key

Digital Signature

Hash Algorithm

Hash

Signed with

Trusted

private key

 Digital Certificate

 A file containing Identification

information (CA‟s name (Issuer),

Alice‟s name (Subject), valid period,

Alice‟s public key, etc) and digital

signature signed by trusted third (CA)

to guarantee its authenticity & integrity

 Certificate Authority (CA)

 Trusted third party like a government

for passports

 CA authenticates that the public key

belongs to Alice

 CA creates Alice‟s a Digital Certificate

Data encrypted using secret key

exchanged using some public key

associated with some certificate.

Certificate

Certificate

93

X.509 V3 Certificate Format

Certificate ::= SEQUENCE {

 tbsCertificate TBSCertificate,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING }

 TBSCertificate ::= SEQUENCE {

 version [0] EXPLICIT Version DEFAULT v1,

 serialNumber CertificateSerialNumber,

 signature AlgorithmIdentifier,

 issuer Name,

 validity Validity,

 subject Name,

 subjectPublicKeyInfo SubjectPublicKeyInfo,

 issuerUniqueID [1] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version shall be v2 or v3

 subjectUniqueID [2] IMPLICIT UniqueIdentifier OPTIONAL,

 -- If present, version shall be v2 or v3

 extensions [3] EXPLICIT Extensions OPTIONAL

 -- If present, version shall be v3

 }

94

Sample Certificate

Certificate:

 Data:

 Version: v3 (0x2)

 Serial Number: 3 (0x3)

 Signature Algorithm: PKCS #1 MD5 With RSA Encryption

 Issuer: OU=Ace Certificate Authority, O=Ace Industry, C=US

 Validity:

 Not Before: Fri Oct 17 18:36:25 1997

 Not After: Sun Oct 17 18:36:25 1999

 Subject: CN=Jane Doe, OU=Finance, O=Ace Industry, C=US

 Subject Public Key Info:

 Algorithm: PKCS #1 RSA Encryption

 Public Key:

 Modulus:

 00:ca:fa:79:98:8f:19:f8:d7:de:e4:49:80:48:e6:2a:2a:86:

 ed:27:40:4d:86:b3:05:c0:01:bb:50:15:c9:de:dc:85:19:22:

 43:7d:45:6d:71:4e:17:3d:f0:36:4b:5b:7f:a8:51:a3:a1:00:

 98:ce:7f:47:50:2c:93:36:7c:01:6e:cb:89:06:41:72:b5:e9:

 73:49:38:76:ef:b6:8f:ac:49:bb:63:0f:9b:ff:16:2a:e3:0e:

 9d:3b:af:ce:9a:3e:48:65:de:96:61:d5:0a:11:2a:a2:80:b0:

 7d:d8:99:cb:0c:99:34:c9:ab:25:06:a8:31:ad:8c:4b:aa:54:

 91:f4:15

 Public Exponent: 65537 (0x10001)

 Extensions:

 Identifier: Certificate Type

 Critical: no

 Certified Usage:

 SSL Client

 Identifier: Authority Key Identifier

 Critical: no

 Key Identifier:

 f2:f2:06:59:90:18:47:51:f5:89:33:5a:31:7a:e6:5c:fb:36:

 26:c9

 Signature:

 Algorithm: PKCS #1 MD5 With RSA Encryption

 Signature:

 6d:23:af:f3:d3:b6:7a:df:90:df:cd:7e:18:6c:01:69:8e:54:65:fc:06:

 30:43:34:d1:63:1f:06:7d:c3:40:a8:2a:82:c1:a4:83:2a:fb:2e:8f:fb:

 f0:6d:ff:75:a3:78:f7:52:47:46:62:97:1d:d9:c6:11:0a:02:a2:e0:cc:

 2a:75:6c:8b:b6:9b:87:00:7d:7c:84:76:79:ba:f8:b4:d2:62:58:c3:c5:

 b6:c1:43:ac:63:44:42:fd:af:c8:0f:2f:38:85:6d:d6:59:e8:41:42:a5:

 4a:e5:26:38:ff:32:78:a1:38:f1:ed:dc:0d:31:d1:b0:6d:67:e9:46:a8:

 dd:c4

-----BEGIN CERTIFICATE-----

MIICKzCCAZSgAwIBAgIBAzANBgkqhkiG9w0BAQQFADA3MQswCQYD

VQQGEwJVUzERMA8GA1UEChMITmV0c2NhcGUxFTATBgNVBAsTDF

N1cHJpeWEncyBDQTAeFw05NzEwMTgwMTM2MjVaFw05OTEwMTgw

MTM2MjVaMEgxCzAJBgNVBAYTAlVTMREwDwYDVQQKEwhOZXRzY

2FwZTENMAsGA1UECxMEUHViczEXMBUGA1UEAxMOU3Vwcml5YSB

TaGV0dHkwgZ8wDQYJKoZIhvcNAQEFBQADgY0AMIGJAoGBAMr6eZiP

GfjX3uRJgEjmKiqG7SdATYazBcABu1AVyd7chRkiQ31FbXFOGD3wNktb

f6hRo6EAmM5/R1AskzZ8AW7LiQZBcrXpc0k4du+2Q6xJu2MPm/8WKuM

OnTuvzpo+SGXelmHVChEqooCwfdiZywyZNMmrJgaoMa2MS6pUkfQVAg

MBAAGjNjA0MBEGCWCGSAGG+EIBAQQEAwIAgDAfBgNVHSMEGDAW

gBTy8gZZkBhHUfWJM1oxeuZc+zYmyTANBgkqhkiG9w0BAQQFAAOBgQ

BtI6/z07Z635DfzX4XbAFpjlRl/AYwQzTSYx8GfcNAqCqCwaSDKvsuj/vwbf

91o3j3UkdGYpcd2cYRCgKi4MwqdWyLtpuHAH18hHZ5uvi00mJYw8W2w

UOsY0RC/a/IDy84hW3WWehBUqVK5SY4/zJ4oTjx7dwNMdGwbWfpRqjd

1A==

-----END CERTIFICATE-----

Certification Path

96

How to Revoke a Certificate?

 Certificate Revocation List (CRL)

A digital document which has a list of revoked certificates

Signed by CA

Defined in X.509 v2

 Why revoke a certificate?

When the user leave (retire from) the organization

Lost the private key, need to use a new key

97

Certificate Revocation List

98

X.509 V2 Certificate Revocation List (CRL) Format

CertificateList ::= SEQUENCE {

 tbsCertList TBSCertList,

 signatureAlgorithm AlgorithmIdentifier,

 signatureValue BIT STRING }

 TBSCertList ::= SEQUENCE {

 version Version OPTIONAL,

 -- if present, shall be v2

 signature AlgorithmIdentifier,

 issuer Name,

 thisUpdate Time,

 nextUpdate Time OPTIONAL,

 revokedCertificates SEQUENCE OF SEQUENCE {

 userCertificate CertificateSerialNumber,

 revocationDate Time,

 crlEntryExtensions Extensions OPTIONAL

 -- if present, shall be v2

 } OPTIONAL,

 crlExtensions [0] EXPLICIT Extensions OPTIONAL

 -- if present, shall be v2

 }

99

웹 시스템

Switching HUB

가입자
등록시스템

운영자
관리 시스템

상태정보
생성 시스템 디렉터리

시스템

FW/IDS

DBMS

인증서 생성
관리 시스템 키 관리

시스템

인터넷/공중망/전용망

가입자
등록시스템

본사
인트라넷

지사

Overall Configuration of CA System

100

Public Key Infrastructure (PKI) Architecture

End entity

Cert/CRL

repository

RA

CA

CA

PKI users

PKI management
entity

Certificate

Authority Certificate / CRL publish

Certificate

publish Registration

Authority

Operational / Management

Transactions

Management

Transactions

 PKI is the hardware, software, people, policies, & procedures

 needed to create, manage, store, distribute, & revoke certificates

101

PKI Trust Relationship

CA1 CA2

CA11 CA12 CA21 CA22

CA

User1 User2

CA2

CA3

CA1

CA5

CA6

CA7

CA4

User1

User2

Hierarchical Structure Network Structure

102

How a PKI works ?

RA

Generate Registration Info & Keypair

Send the Public Key and Registration Info to RA

Certificate

Request

CA signs a valid request

Send the signed

request back to RA

RA delivers the

Certificate to user

Cert is published

in Directory

Applications using Certificates can :

• Look up certificate details

• Perform revocation checks

• Check certificate validity

• Check signatures

• Decrypt data

Applications and

other users Directory

103

Certification Hierarchy

Root CA

Issuer = Root

Subject = Root

Subordinate CA

Issuer = Root

Subject = Taejon

Subordinate CA

Issuer = Root

Subject = Future

Subordinate CA

Issuer = Taejon

Subject = KAIST

End Entity

Issuer = Future

Subject = Future

 Employee

End Entity

Issuer = Taejon

Subject = Taejon

 Citizen

End Entity

Issuer = Future

Subject = Future

 Employee

End Entity

Issuer = KAIST

Subject = KAIST

 Student

EE certificates are signed

by their own CA

Sub CA certificate is signed

by its superior CA

Root CA certificate is

self-signed

If you trust the CA that

signed the certificate,

you can trust the certificate

104

Korean PKI Structure

전자서명 인증관리센터

http://www.kisa.or.kr/kisa/kcac/jsp/kcac.jsp

105

Korean PKI Structure

전자서명법 제4조의 규정에 의하여 지정된 공인인증기관
• 한국정보인증(주) http://www.signgate.com

• (주)코스콤 http://www.signkorea.com

• 금융결제원 http://www.yessign.or.kr

• 한국정보사회진흥원 http://sign.nca.or.kr

• 한국전자인증(주) http://gca.crosscert.com

• 한국무역정보통신 http://www.tradesign.net

106

Homework #6

 Solve the exercises in this lecture

Exercise 1: factorization using the quadratic sieve algorithm

Exercise 2: Solve DLP using index calculus

Exercise 3: RSA construction

