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1. Introduction to PKC 
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Key Distribution Problem of Symmetric Key Crypto 

 In symmetric key cryptosystems   

 Over complete graph with n nodes, nC2 = n(n-1)/2 pairs secret keys are 

required.  

 (Example) n=100, 99 x 50 =  4,950 keys are required  

 Problem: Managing large number of keys and keeping them in a secure 

manner is difficult  

b 

a 

c d 

e 
Secret keys are required between 

(a,b), (a,c), (a,d), (a,e), (b,c),  

(b,d), (b,e), (c,d), (c,e), (d,e) 
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Public Key Cryptography - Concept 

In Encryption  

     Anyone can lock (using the public key) 

     Only the receiver can unlock (using the private key) 

In Digital Signature  

     Only the signer can sign (using the private key) 

     Anyone can verify (using the public key) 

Using a pair of keys which have special mathematical relation. 

Each user needs to keep securely only his private key. 

All public keys of users are published.  
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Symmetric key vs. Asymmetric Key Crypto 

Symmetric Asymmetric 

Key relation 

Enc. Key 

Dec. key 

Algorithm 

Example 

Key Distribution  

Number of keys 

E/D Speed 

Enc. key = Dec. key 

Secret 

Secret 

Secret           Public 

SKIPJACK     AES 

Required (X) 

Many (X) 

Fast(O) 

Enc. Key  Dec. key 

Public, {private} 

Private, {public} 

Public 

RSA 

Not required (O) 

Small (O) 

Slow(X) 

O : merit 

X : demerit 
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Public Key Cryptography - Concept 

 One-way functions  

 Given x, easy to compute y=f(x). 

 Difficult to compute x=f-1(y) for given y. 

 

x,  
domain parameters 

y = f(x) 
domain parameters f 

easy 

hard 

Ex)  f(x)= 7x21 + 3x3 + 13x2+1 mod (215-1) 
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Public Key Cryptography - Concept 

 Trapdoor one-way functions   

 Given x, easy to compute f(x) 

 Given y, difficult to compute f-1(y) in general 

 Easy to compute f-1(y) for given y to only who knows certain information 

(which we call trapdoor information) 

x,  
domain parameters 

y = f(x) 
domain parameters f 

easy 

hard 

trapdoor info. 
private key public key 

But, easy if trapdoor info. is given.  
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Public Key Cryptography - Concept 

 Concept  

 invented by Diffie and Hellman in 1976, “New directions in Cryptography”, 

IEEE Tr. on IT. ,Vol. 22, pp. 644-654, Nov., 1976. 

 Overcome the problem of secret key sharing in symmetric cryptosystems 

 Two keys used: public key & private key 

 Also known as two-key cryptography or asymmetric cryptography 

 Based on (trapdoor) one-way function  

x,  
domain parameters 

y = f(x) 
domain parameters f 

easy 

hard 

trapdoor info. 
private key public key 

But, easy if trapdoor info. is given.  
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Public Key Cryptography  

 Keys 

 A pair of (Public Key, Private Key) for each user 

 Public keys must be publicly & reliably available 

 Encryption schemes 

 Encrypt with peer‟s Public Key;  Decrypt with its own Private Key 

 RSA, ElGamal  

 Digital signature schemes 

 Sign with its own Private Key;  verify with peer‟s Public Key  

 RSA, DSA, KCDSA, ECDSA, EC-KCDSA …  

 Key exchange schemes 

 Key transport or key agreement for secret-key crypto. 

 RSA; DH(Diffie-Hellman), ECDH 
 

 All problems clear? 

  New Problem : How to get the right peer‟s Public Key? 

  Public key infrastructure (PKI) required 

 Certificate is used to authenticate public key  
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Public Key Cryptosystems 

 Public key cryptography is based on hard problems.  

 

 Encryption schemes 

 RSA: based on IFP 

 ElGamal: based on DLP 

 

 Signature schemes 

 Signature schemes with message recovery: RSA  

 Signature with appendix: ElGamal, DSA, KCDSA 

 

 Key exchange schemes 

 Key transport: a trusted entity TA generates and 

distributes key  

 Key agreement: Diffie-Hellman key agreement. Both entity 

take part in the key agreement process to have an agreed 

key 
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Public Key Encryption vs. Digital Signature 

E D 

Alice’s Public Key 

Plaintext 

M 

Ciphertext 
  
C 

Plaintext 

M 

Alice’s Private Key 

Alice Bob 

Authentic channel 

S V 

Bob’s private Key 

Plaintext 

M 

Message + Signature 
  

M + s 

Yes / No 

Bob’s public Key 

Alice Bob 

Authentic channel 
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Public Key Cryptosystems – History  

 RSA scheme (1978) 

 R.L.Rivest, A.Shamir, L.Adleman, “A Method for Obtaining 

Digital Signatures and Public Key Cryptosystems”,CACM, 

Vol.21, No.2, pp.120-126,Feb,1978  

 McEliece scheme (1978) 

 Rabin scheme (1979)  

 Knapsack scheme (1979-): Merkle-Hellman, Chor-Rivest  

 ElGamal scheme (1985) 

 Elliptic Curve Cryptosystem (1985): Koblitz, Miller 

 Non-Abelian group Cryptography (2000): Braid group 
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2. Hard Problems   

 
IFP (Integer Factorization Problem) 

 

DLP (Discrete Logarithm Problem) 
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Integer Factorization Problem (IFP) 

 Problem: Given a composite number n, find its prime factors 

 

 

 

 

 

 

 Application: Used to construct RSA-type public key cryptosystems 

 

 Algorithms to solve IFP (probabilistic sub-exponential algorithms) 

 Quadratic sieve  

 General Number Field Sieve  

easy 

Primes p, q  n = pq 
hard 
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Quadratic Sieve  

 Factor n (=pq)  using the quadratic sieve algorithm  

 

 Basic principle:  

Let n be an integer and suppose there exist integers x and y 

with x2 = y2 (mod n), but x ±y (mod n). Then gcd(x-y,n) gives 

a nontrivial factor of n. 

 

 Example 

Consider n=77 

72=-5 mod 77, 45=-32 mod 77 

72*45 = (-5)*(-32) mod 77 

23*34*5 = 25*5 mod 77 

92 = 22 mod 77 

gcd(9-2,77)=7, gcd(9+2,77)=11 

77=11*7  Factorization 
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Quadratic Sieve  

 Example: factor n=3837523.  

    (textbook p. 183) 

 

Observe  

93982 = 55 x 19 (mod 3837523) 

190952 = 22 x 5 x 11 x 13 x 19 (mod 3837523)  

19642 = 32 x 133 (mod 3837523)  

170782 = 26 x 32 x 11 (mod 3837523)  

 

Then we have  

(9398 x 19095 x 1964 x 17078)2 = (24x32x53x11x132x19)2  

22303872 = 25867052 (mod 3837523) 

gcd(2230387-2586705, 3837523)=1093  

3837523 / 1093 = 3511 

 

3837523 = 1093 x 3511     succeed !  
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Quadratic Sieve  

 Quadratic Sieve algorithm : find factors of integer n  

1. Initialization: a sequence of quadratic residues Q(x)=(m+x)2-n 

is generated for small values of x where m=sqrt(n). 

2. Forming the factor base: the base consists of small primes. 

FB={-1,2,p1,p2,…,pt-1} 

3. Sieving: the quadratic residues Q(x) are factored using the 

factor base till t full factorizations of Q(x) have been found. 

4. Forming and solving the matrix: Find a linear combination of 

Q(x)‟s which gives the quadratic congruence. The 

congruence gives a nontrivial factor of n with the probability 

½ .  

 

 Exercise 1: Find factors of n=4841 using the quadratic sieve algorithm 

 

http://www.answers.com/topic/quadratic-sieve?cat=technology 
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General Number Field Sieve (GNFS) 

 GNFS (general number field sieve) is the most efficient 

algorithm known for factoring integers larger than 100 digits. 

 

 Asymptotic running time: sub-exponential  

 

 

 

 
1/ 3 2 / 3(1.526 (1))(ln ) (ln ln )1

[ ,1.526]
3

o n n

nL O e 

)(],[
1)ln(ln)(ln 



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Complexity of algorithm    

 

 

 

• If =0, polynomial time algorithm 

• If >=1, exponential time algorithm 

• If 0<<1, sub-exponential time algorithm 

ln n : number of bits of n 



RSA Challenge 

Digits Year MIPS-year Algorithm 

RSA-100 

RSA-110 

RSA-120 

RSA-129 

RSA-130 

RSA-140 

RSA-155 

RSA-160 

RSA-174 

RSA-200 
 

„91.4. 

„92.4. 

„93.6. 

„94.4.(AC94) 

„96.4.(AC96) 

„99.2 (AC99) 

‟99.8 

‟03.1 

‟03.12 

„05.5 

7 

75 

830 

5,000 

? 

? 

8,000 

Q.S. 

Q.S. 

Q.S. 

Q.S. 

NFS 

NFS 

GNFS 

Lattice Sieving + HW 

Lattice Sieving + HW 

Lattice Sieving + HW 

•MIPS : 1 Million Instruction Per Second for 1 yr = 3.1 x 1013 instruction 

•http://www.rsasecurity.com./rsalabs, expectation : 768-bit by 2010, 1024-bit by 2018 



RSA Challenge Solution 

RSA-160  
Date: Tue, 1 Apr 2003 14:05:10 +0200  

From: Jens Franke  

Subject: RSA-160  

 

We have factored RSA160 by gnfs. The prime factors are: 

p=45427892858481394071686190649738831\  656137145778469793250959984709250004157335359 

q=47388090603832016196633832303788951\  973268922921040957944741354648812028493909367  

 
  http://www.loria.fr/~zimmerma/records/rsa160 

http://www.loria.fr/~zimmerma/records/rsa200 

RSA-200 
Date: Mon, 9 May 2005 18:05:10 +0200 (CEST)  

From: Thorsten Kleinjung  

Subject: rsa200  

 

We have factored RSA200 by GNFS. The factors are  

p=35324619344027701212726049781984643686711974001976\ 25023649303468776121253679423200058547956528088349 

and  

q=79258699544783330333470858414800596877379758573642\ 19960734330341455767872818152135381409304740185467  
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 Problem:  

Given g, y, and prime p, find an integer x, if any, such that  

y = gx mod p (x=loggy) 

 

 

 

  

 Application: Used to construct Diffie-Hellman & ElGamal-type 

public key systems: DH, DSA, KCDSA … 

 

 Algorithms to solve DLP:  

  Shank‟s Baby Step Giant Step  

  Index calculus  

Discrete Logarithm Problem (DLP) 

  

 
easy y = gx mod p 

hard 
x = logg y 

Given g, x, p 

Given g, y, p 
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 Problem: find an integer x, if any, such that y = gx mod p (x=loggy)    

 

 Algorithm  

 

Shank‟s Baby Step, Giant Step algorithm 

pygg Nkj mod

1. Choose an integer   1 pN

2. Computes Njpg j 0for   ,mod

3. Computes Nkpyg Nk  0for   ,mod

4. Look for a match between the two lists. If a match is found,  

Then 
Nkjx ggy 

We solve the DLP. Nkjx 

Baby Step 

Giant Step 
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Shank‟s Baby Step, Giant Step algorithm 

Match found! 

Baby Step 

Giant Step 

pygg Nkj mod
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 Problem: find an integer x, if any, such that y = gx mod p (x=loggy)    

 

 Algorithm  

Index Calculus  

1. Choose a factor base S={p1,p2,…pm} 

      which are primes less than a bound B. 

2. Collect linear relations 
1. Select a random integer k and compute gk mod p  
2. Try to write gk as a product of primes in S 

 mod ,    then  log mod 1iak

i i g i

ii

g p p k a p p  

3. Find the logarithms of elements in S solving the linear relations 

4. Find x 

 For a random r, compute ygr mod p and try to write it as a  

      product of primes in S.  

mod ,    then  log mod 1ibr

i i g i

ii

yg p p x r b p p    
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 Example: Let p=131, g=2, y=37. Find x=log237 mod 131 

 

 Solution 
Let B=10, S={2,3,5,7} 

Index Calculus  

21 = 2 mod 131 

28 = 53 mod 131 

212 = 5 * 7 mod 131 

214 = 32 mod 131 

234 = 3 * 52 mod 131 

1 = log22 mod 130  

8 = 3*log25 mod 130 

12= log25 + log27 mod 130 

14 = 2*log23 mod 130 

34 = log23 + 2*log25 mod 130 

log22 = 1 

log25 = 46   

log27 = 96   

log23 = 72 

37 * 243 = 3 * 5 * 7 mod 131 

Log237 = -43 + log23 + log25 + log27 mod 130 = 41  

241 mod 131 = 37 Solution :  

 Exercise 2: Let p=809. Find log3525 mod 809.  
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 Complexity of best known algorithm for solving DLP:  

 

 

 

 

 

 Complexities of solving IFP and DLP are similar  

Discrete Logarithm Problem (DLP) 

 
1/ 3 2 / 3(1.923 (1))(ln ) (ln ln )1

[ ,1.923]
3

o p p

pL O e 
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3. Public Key Encryption   

 
RSA  

 

ElGamal 
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Shamir Rivest Adleman 

RSA Public Key Systems 

 RSA is the first public key cryptosystem  

 Proposed in 1977 by Ron Rivest, Adi Shamir and Leonard 

Adleman at MIT  

 It is believed to be secure and still widely used      
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RSA Public Key Systems 

 Key generation 

 Choose two large (512 bits or more) primes p & q 

 Compute modulus n = pq, and (n) = (p-1)(q-1) 

 Pick an integer e relatively prime to (n), gcd(e, (n))=1  

 Compute d such that ed = 1 mod (n)  

 Public key (n, e) : publish 

 Private key d : keep secret (may discard p & q) 
 

 Special Property 

 (me mod n)d mod n = (md mod n)e mod n for 0 < m < n 
 

 Encryption / Decryption 

 E: c = me mod n  for 0 < m < n 

 D: m = cd mod n  

 Proof)  Cd = (Me)d = Med = Mk(n) +1 = M {M(n)}k = M 
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RSA as a Trapdoor One-way Function 

Message 

m 

Ciphertext 

c 

c = f(m) = me mod n 

m = f-1(c) = cd mod n 

Public key 

Private key 

(trapdoor information) 

n = pq (p & q: primes) 

ed = 1 mod (p-1)(q-1) 
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RSA Public Key Systems 

 Example:   

Key Generation 

– p=3, q=11 

– n = pq = 33, (n) =(p-1)(q-1) = 2 x10 = 20 

– e = 3 s.t. gcd(e, (n) )=(3,20)=1 

– Choose d s.t. ed =1 mod (n), 3d = 1 mod 20, d=7 

– Public key ={e,n}={3,33},  private key ={d}={7} 

Encryption 

– M =5 

– C = Me mod n = 53 mod 33 =26 

Decryption  

– M =Cd mod n = 267 mod 33= 5  
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RSA Public Key Systems 

 Exercise 3:  Provide an example of RSA key generation, 

encryption, and decryption for  

 

1) p=17, q=23 (by hand calculation)  

2) p=2357, q=2551 (using big number calculator) 

3) p=885320963, q=238855417 (using big number calculator) 

 

1. Key generation  

 

2. Encryption 

 

3. Decryption  
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Selecting Primes p and q for RSA  

 How to select primes p and q ?   

 

1. |p|  |q| to avoid ECM (Elliptic Curve Method for factoring) 

 

2. p-q must be large to avoid trial division 

 

3. p and q are strong prime 

 p-1 has large prime factor r (pollard‟s p-1) 

 p+1 has large prime factor (William‟s p+1) 

 r-1 has large prime factor (cyclic attack) 
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Security of RSA  

 Common Modulus attack: 

  

 If multiple entities share the same modulus n=pq with different 

pairs of (ei, di), it is not secure. Do not share the same modulus! 

 

 Cryptanalysis: If the same message M was encrypted to 

different users 

 User u1 : C1 = Me1 mod n 

 User u2 : C2 = Me2 mod n  

If gcd(e1,e2)=1, there are a and b s.t. ae1 + be2 = 1 mod n  

Then,   

(C1)
a(C2)

b mod n = (Me1)a(Me2)b mod n = Mae1+be2 mod n = M mod n 
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Security of RSA  

 Cycling attack  

If f(f( …f(M)))=f(M) where  f(M) = Me mod n ? 

If a given ciphertext appears after some iterations, we can 

recover the plaintext at collusion point. 

Let C=Me mod n 

If (((Ce)e)…)e mod n = Ce^k mod n = C, then Ce^(k-1) mod n = M 

 

 Multiplicative attack (homomorphic property of RSA)  

(M1
e) (M2

e) mod n = (M1 x M2 ) 
e mod n  
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Attack on RSA Implementations  

 Timing attack:  (Kocher 97) 

 The time it takes to compute C
d
 (mod N) 

 can expose d. 

 Power attack:  (Kocher 99) 

  The power consumption of a smartcard while  

 it is computing C
d
 (mod N) can expose d. 

 Faults attack:  (BDL 97) 

 A computer error during C
d
 (mod N)   

 can expose d.       
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Security of Public Key Encryption Schemes 

  Security goals  

 One-wayness (OW): the adversary who sees a ciphertext is 

not able to compute the corresponding message   

 Indistinguishability (IND): observing a ciphertext, the 

adversary learns nothing about the plaintext. Also known as 

semantic security. 

 Non-malleability (NM): observing a ciphertext for a message 

m, the adversary cannot derive another ciphertext for a 

meaningful plaintext m‟ related to m 

 

 Original RSA encryption is not secure 

 In IND: deterministic encryption 

 In NM: for example, from c=me, c‟ = 2ec = (2m)e is easily 

obtained. It cannot be used in bidding scenario.    
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Security of Public Key Encryption Schemes 

 Indistinguishability  

m0, m1 
bR{0,1} 

PKE(pk, sk) 

Challenge: C=E(mb) 

Guess b? 

The adversary win if he guess b correctly with a 
probability  significantly greater than 1/2  
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Security of Public Key Encryption Schemes 

 Assume the existence of Decryption Oracle 

 Mimics an attacker‟s access to the decryption device  

 

 Attack models   

 Chosen Plaintext Attack (CPA): the adversary can encrypt 

any plaintext of his choice. In public key encryption this is 

always possible. 

 Non-adaptive Chosen Ciphertext Attack (CCA1): the attacker 

has access to the decryption oracle before he sees a 

ciphertext that he wishes to manipulate  

 Adaptive Chosen Ciphertext Attack (CCA2): the attacker has 

access to the decryption oracle before and after he sees a 

ciphertext c that he wishes to manipulate (but, he is not 

allowed to query the oracle about the target ciphertext c.) 



RSA Padding 

 RSA encryption without padding 

 Deterministic encryption (same plaintext  same ciphertext) 

 Multiplicative property: m1
e . m2

e = (m1m2)
e mod n 

 Lots of attacks possible 

 Redundancy checking is essential for security 

 

 RSA encryption with OAEP 

 RSA encryption after OAEP (Optimal Asymmetric Encryption 

Padding) 

 Proposed by Bellare and Rogaway 

 Probabilistic encoding of message before encryption   

 RSA becomes a probabilistic encryption  

 Secure against IND-CCA2 
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RSA with OAEP 

 OAEP  RSA encryption 

s=mG(r) 

t=rH(s) 

r=tH(s) 

m=sG(r) 

Encryption padding 

Decryption padding 

c=E(s,t) RSA encryption 

 RSA decryption  OAEP 

(s,t)=D(c) RSA decryption 

+ 

m r 

s t 

+ H 

G 

n-bit message l-bit random value 

G 

H 

Hash function 

(Random oracle) 

r : l-bit random value 

OAEP looks like a kind of Feistel network. 
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RSA Encryption with RSA-OAEP Padding 

EM = 

Padding 

string:all 0x00 

mLen   

k - 2hLen - 2 

 Parameter : Hash, MGF 

 Input : M, L, (n, e) 

Random string, 

seedLen = hLen 

MGF(Seed, Len) =  

  Hash(Seed || 0) ||  

  Hash(Seed || 1) ||  

         . . .  

  Hash(Seed || t) 

DB = 

 

Hash L M 

M 01 lHash PS 

MaskedDB 

MGF 

Seed 

masked 

Seed 

MGF  

00 

C = (EM)e mod n 

(Optional) Label 

In PKCS #1 v2.0, v2.1 
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Diffie-Hellman / ElGamal-type Systems  

 Domain parameter generation 

 Based on the hardness of DLP  

 Generate a large (1024 bits or more) prime p 

 Find a generator g that generates the cyclic group Zp
*  

 Domain parameter = {p, g} 

 

 Key generation  

 Pick a random integer x  [1, p-1] 

 Compute y = gx mod p 

 Public key (p, g, y) : publish 

 Private key x : keep secret 

 

 Applications 

 Public key encryption 

 Digital signatures 

 Key agreement 
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ElGamal Encryption Scheme 

 Keys & parameters 

 Domain parameter = {p, g} 

 Choose x  [1, p-1] and compute y = gx mod p 

 Public key (p, g, y) 

 Private key x 

 

 Encryption: m  (C1, C2) 

 Pick a random integer k  [1, p-1] 

 Compute C1 = gk mod p 

 Compute C2 = m  yk mod p 

 

 Decryption 

 m = C2  C1
-x mod p 

 C2  C1
-x = (m  yk)  (gk)-x = m  (gx)k  (gk)-x = m mod p 
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ElGamal Encryption Scheme -- Example 

 Key Generation 

 Let p=23, g=7 

 Private key x=9 

 Public key y = gx mod p = 79 mod 23 = 15 

 

 Encryption: m  (C1, C2) 

 Let m=20 

 Pick a random number k=3 

 Compute C1 = gk mod p = 73 mod 23 = 21 

 Compute C2 = m  yk mod p = 20  153 mod 23 = 20  17 mod 

23 = 18 

 Send (C1 ,C2) = (21,18) as a ciphertext 

 

 Decryption 

 m = C2 / C1
x mod p = 18 / 219 mod 23 = 18 / 17 mod 23 = 20 
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4. Digital Signatures   

 
RSA, ElGamal, DSA, KCDSA, Schnorr 
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Digital Signature 

 Digital Signature  

 Electronic version of handwritten signature on 

electronic document 

 Signing using private key (only by the signer) 

 Verification using public key (by everyone) 

 

 Hash then sign: sig(h(m)) 

 Efficiency in computation and communication  
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Digital Signature 

 Security requirements for digital signature 

 Unforgeability (위조 방지)  

 User authentication (사용자 인증) 

 Non-repudiation (부인 방지) 

 Unalterability (변조 방지) 

 Non-reusability (재사용 방지) 

 

 Services provided by digital signature  

 Authentication 

 Data integrity 

 Non-Repudiation 
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 Digital Signature 

 Combine Hash with Digital Signature and use PKC 

 Provide Authentication and Non-Repudiation 

 RSA; DSA, KCDSA, ECDSA, EC-KCDSA 

Digital Signature 

Signature 

Sender‟s 

Private  

Key 

Hash Algorithm 

Hash Hash Algorithm 

Hash1 Hash2 

Sender‟s 

Public 

Key 

SEND 

Signature 

Signature 

S
ig

n
in

g
 

V
e

rify
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g
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RSA Signature  

 Key generation 

 Choose two large (512 bits or more) primes p & q 

 Compute modulus n = pq, and (n) = (p-1)(q-1) 

 Pick an integer e relatively prime to (n), gcd(e, (n))=1  

 Compute d such that ed = 1 mod (n)  

 Public key (n, e) : publish 

 Private key d : keep secret (may discard p & q) 
 

 Signing / Verifying 

 S: s = md mod n  for 0 < m < n 

 V: m =? se mod n  

 S: s = h(m)d mod n   --- hashed version  

 V: h(m) =? se mod n  

 

 RSA signature without padding   

 Deterministic signature, no randomness introduced  
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RSA Signature  

 RSA signature forgery: Attack based on the multiplicative 

property of RSA.  

y1 = (m1)d 

y2 = (m2)d, then  

(y1y2)e = m1m2 

Thus y1y2 is a valid signature of m1m2 

 

 This is an existential forgery using a known message attack. 
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RSA Signing with RSA-PSS Padding 

M’ = 

EM = 

 Parameter : Hash, MGF, sLen 

 Input : M, (n, d) 

salt mHash Pad 

MaskedDB 

MGF  

Hash 

H 

salt DB = 

bc 

Pad = 0x00 00 00 00 00 00 00 00 

(8 octets of all zeros) Hash 

M 

01 PS 

Padding string: 

all 0x00 

S = (EM)d mod n 

Random octet string 

of sLen octets 

emLen = (|n|-1)/8 
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ElGamal Signature Scheme 

 Keys & parameters 

 Domain parameter = {p, g} 

 Choose x  [1, p-1] and compute y = gx mod p 

 Public key (p, g, y) 

 Private key x 

 

 Signature generation: (r, s) 

 Pick a random integer k  [1, p-1] 

 Compute r = gk mod p 

 Compute s such that m = xr + ks mod p-1  

 

 Signature verification 

 yrrs mod p =? gm mod p  

- If equal, accept the signature (valid) 

- If not equal, reject the signature (invalid) 

 

 No hash function…  
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Digital Signature Algorithm (DSA) 

Private : x 

Public : p, q, g, y 

 p : 512 ~ 1024-bit prime 

 q : 160-bit prime, q | p-1 

 g : generator of order q 

 x : 0 < x < q 

 y = gx mod p 
 Signing 

r = (gk mod p) mod q  

s = k-1(SHA1(m) + xr) mod q 

 Verifying 

m, (r,s) 

Pick a random k s.t. 0 < k < q 

w = s-1 mod q  

u1 = SHA1(m)  w mod q 

u2 = r  w mod q  

v = (gu1  yu2 mod p) mod q  

v =? r 

m, (r,s) 
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Korean Certificate-based Digital Signature Algorithm (KCDSA) 

Private : x 

Public : p, q, g, y 
          z=h(Cert_Data) 

 p : 768+256k (k=0 ~ 5) bit prime 

 q : 160+32k (k=0~3) bit prime, q | p-1 

 g : generator of order q 

 x : 0 < x < q 

 y = gx mod p, x = x-1 mod q 

 Signing 

r = HAS160(gk mod p) 

e = r  HAS160(z || m) 

s = x(k - e) mod q 

 Verifying 

m, (r,s) 

Pick a random k s.t. 0 < k < q 

e = r  HAS160(z || m)  

v = ys  ge mod p 

HAS160(v) =? r 

m, (r,s) 
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Schnorr Signature Scheme 

 Domain parameters 

 p = a large prime (~ size 1024 bit), q = a prime (~size 160 bit) 

 q = a large prime divisor of p-1 (q | p-1)  

 g = an element of Zp of order q, i.e., g  1 & gq = 1 mod p 

 Considered in a subgroup of order q in modulo p  

 

 Keys 

 Private key x R [1, q-1] : a random integer  

 Public key y = gx mod p 

 

 Signature generation: (r, s) 

 Pick a random integer k R [1, q-1] 

 Compute r = h(gk mod p, m) 

 Compute s = k – xr mod q  

 

 Signature verification 

 r =? h(yrgs mod p, m) 
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Security of Digital Signature Schemes 

  Security goals  

 Total break: adversary is able to find the secret for signing, 

so he can forge then any signature on any message. 

 Selective forgery: adversary is able to create valid 

signatures on a message chosen by someone else, with a 

significant probability.  

 Existential forgery: adversary can create a pair (message, 

signature), s.t. the signature of the message is valid. 
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Security of Digital Signature Schemes 

  Attack models  

 Key-only attack: Adversary knows only the verification 

function (which is supposed to be public).  

 Known message attack: Adversary knows a list of 

messages previously signed by Alice.  

 Chosen message attack: Adversary can choose what 

messages wants Alice to sign, and he knows both the 

messages and the corresponding signatures. 
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5. Signcryption  
 

Signature + Encryption 
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What is Signcryption?  

 Provides the functions of  

 digital signature : unforgeability & non-repudiation 

 public key encryption : confidentiality 

 

 Two birds in one stone  

 

 Has a significantly smaller computation & communication cost 

compared with traditional digital envelop (signature-then-

encryption) 

Cost (signcryption) << Cost (signature) + Cost (encryption) 
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Signcryption – system setup  

• Public to all 

– p : a large prime 

– q : a large prime  

      factor of p-1 

– g : 0<g<p & with  

      order q mod p 

– G: 1-way hash 

– H: 1-way hash 

– (E,D) :  

symmetric key encryption & 

decryption algorithms 

:   secret  key

:   public key

        ( mod )a

a

a

x

a

x

y

y g p

Alice's keys:

:   secret  key

:   public key

        ( mod )b

b

b

x

b

x

y

y g p

Bob's keys:



1. ( ) mod

2. ( )

3. ( )

4. Return  if 

    ( , , ) 

5. Return "invalid" otherwise

bs xr

a

k

w y g p

k G w

m D c

m

r H m bind_info w


 







Unsigncryption by Bob :

m (c,r,s) m (c,r,s) 

1. Pick at random {1,..., 1}

2. mod

3. ( )

4. ( , , )

5. /( ) mod

6. ( )

7. return ( , , )

b

R

x

a

k

x q

w y p

k G w

r H m bind_info w

s x r x q

c E m

c r s

 







 



Signcryption by Alice:

Signcryption – 1st Example 



1. ( ) mod

2. ( )

3. ( )

4. Return  if 

    ( , , ) 

5. Return "invalid" otherwise

b
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Unsigncryption by Bob :

m (c,r,s) m (c,r,s) 

1. Pick at random {1,..., 1}

2. mod

3. ( )

4. ( , , )

5. /(1 ) mod

6. ( )

7. return ( , , )

b
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x

a

k

x q

w y p

k G w

r H m bind_info w

s x x r q

c E m
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Signcryption by Alice:

Signcryption – 2nd Example 



1. ( ) mod

2. ( )

3. ( )

4. Return  if 

    ( , , ) 

5. Return "invalid" otherwise
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Unsigncryption by Bob :

m (c,r,s) m (c,r,s) 

1. Pick at random {1,..., 1}

2. mod

3. ( )

4. ( , , )

5. ( ) mod

6. ( )

7. return ( , , )
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a

k

x q

w y p

k G w
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s x x r q

c E m
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 
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

  
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Signcryption by Alice:

Signcryption – 3rd Example 



• based on DL on an Elliptic Curve 

– Zheng, CRYPTO‟97 

– Zheng & Imai IPL 1998 

• based on other sub-groups (e.g. XTR) 

– Lenstra & Verheul, CRYPTO2000 

– Gong & Harn, IEEE-IT 2000 

– Zheng, CRYPTO‟97 

• based on DL on finite field 

– Zheng, CRYPTO‟97 

• based on factoring / residuosity 

– Steinfeld & Zheng, ISW2000 

– Zheng, PKC2001 

M
o
re efficien

t 

Major Instantiations of Signcryption 



(a) Signcryption 

     based on DL 

m 

sig 

EXP=1+1.17 

(c) Signature-then-Encryption 

      based on DL 

m 

sig 

gx 

EXP=3+2.17 

(b) Signature-then-Encryption 

      based on RSA 

m 

sig 

EXP=2+2 

k
eb

Signcryption vs. Signature-then-Encryption 
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• Proofs for the confidentiality and unforgeability of signcryption 

–  Confidentiality --- Providing a reduction  

• from breaking the security of signcryption with respect to 
adaptive chosen ciphertext attacks in the flexible public key 
model  

• to breaking the GAP Diffie-Hellman assumption, in the random 
oracle model 

– Unforgeability --- Providing a reduction  

• from breaking the unforgeability of signcryption against 
adaptive chosen message attacks 

• to the Discrete Logarithm problem, in the random oracle model 

Security Proofs  
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6. Key Exchange  

 
Diffie-Hellman 
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Diffie-Hellman Key Agreement Scheme 

choose Xa  [1, p-1] 

Ya = g
Xa mod p 

Ya 

choose Xb  [1, p-1] 

Yb = g
Xb  mod p 

Yb 

compute the shared key  

Ka = Yb
Xa = g

XbXa mod p 

compute the shared key  

Kb = Ya
Xb = g

XaXb mod p 

Domain Parameters 

p, g 
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Diffie-Hellman Problem 

  Computational Diffie-Hellman (CDH) Problem  

Given Ya = g
Xa mod p and Yb = g

Xb mod p,  

 

compute Kab = g
XaXb mod p  

  Decision Diffie-Hellman (DDH) Problem  

Given Ya = g
Xa mod p and Yb = g

Xb mod p,  

 

distinguish between Kab = g
XaXb mod p and a random string 

  Discrete Logarithm Problem (DLP) 

Given Y = g
X mod p, compute X = logbY. 

The Security of the Diffie-Hellman key agreement depends on 

the difficulty of CDH problem. 
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Man in the Middle Attack in Diffie-Hellman Key Agreement 

Xb : private 

Yb = g
Xb : public 

Yb Yc 

Xa : private 

Ya = g
Xa : public 

Yc = g
Xc  for some Xc Yc Ya 

Bob computes the 
session key  

Kb = Yc
Xb = g

XcXb 

Alice computes the 
session key  

Ka = Yc
Xa = g

XcXa 

Adversary computes 
the both session keys 

Kb = Yb
Xc = g

XcXb 

Ka = Ya
Xc = g

XcXa 

Problem comes from 

no authentication 
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Diffie-Hellman Key Agreement using Certified Key 

choose Xa  [1, p-1] 

Ya = g
Xa mod p 

choose Xb  [1, p-1] 

Yb = g
Xb  mod p 

compute the shared key  

Ka = Yb
Xa = g

XbXa mod p 

compute the shared key  

Kb = Ya
Xb = g

XaXb mod p 

Domain Parameters 

p, g 

Certified 

key 

Ya and Yb 

•Interaction is not required 

•Agreed key is fixed, long-term use 
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MTI Protocols  -- 

choose Xa  [1, p-1] 

Ya = g
Xa mod p 

choose Xb  [1, p-1] 

Yb = g
Xb  mod p 

compute the shared key  

Ka = Yb
ka Tb

Xa = g
Xbka g

kbXa 

compute the shared key  

Kb = Ya
kb Ta

Xb = g
Xakb g

kaXb 

Domain Parameters 

p, g 

Certified 

key 

Ya and Yb 

by Matsumoto, Takashima, Imai 

Ta 

Tb 

Choose ka  [1, p-1] 

Ta = g
ka mod p 

choose kb  [1, p-1] 

Tb = g
kb  mod p 
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7. Elliptic Curve Cryptosystem  
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Elliptic Curve (1) 

 Weierstrass form of Elliptic Curve 

 y2 + a1 xy + a3 = x3 + a2 x
2 + a4 x + a6  

 

 Example (over rational field) 

 y2 = x3 – 4x + 1 

 E(Q)  

    = {(x,y)  Q2 | y2 = x3 – 2x + 2} U OE 

 P = (2, 1),     –P = (2, –1) 

 [2]P = (12 , -41)  

 [3]P = (91/25, 736/125) 

 [4]P = (5452/1681, -324319/68921) 

 

P 
Q 

P + Q 
-Q 

P - Q 
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Elliptic Curve (2) 

 

 Example (over finite field GF(p) : p = 13) 

 P = (2,1), –P = (2, 12), [2]P = (12, 11) 

 [3]P = (0, 1), [4]P = (11, 12), …… ,  [18]P = OE 

 Hasse‟s Theorem : p – 2p  # of E(p)  p + 2p 

 Scalar multiplication: [d]P 

 

 Elliptic Curve Discrete Logarithm 

 Base of Elliptic Curve Cryptosystem (ECC) 

 

 

 

 

 

y = gx mod p Q = [d]P 

Find x for given Y Find d for given Q 
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Elliptic Curve Cryptosystems  

 Advantages 

 Breaking PKC over Elliptic Curve is much harder 

 We can use much shorter key 

 Encryption/Decryption is much faster than that of other PKCs 

 It is suitable for restricted environments like mobile phone, 
smart card 

 
 Disadvantages 

 It‟s new technique  There may be new attacks 

 Too complex to understand 

 ECC is a minefield of patents 

: e.g. US patents 

4587627/739220 – Normal Basis, 5272755 – Curve over GF(p) 

5463690/5271051/5159632 – p=2^q-c for small c, etc… 
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Key Sizes and Algorithms 

 System strength, Symmetric Key strength, Public Key strength  

must be consistently matched for any network protocol usage.   
 Selection Rules  

 Determine symmetric key sizes : n  

 Symmetric Cipher  Key exchange Algorithm  Authentication Algorithm 

Sym. RSA/DH ECC 

64 512 - 

90 1024 160 

120 2048 210 

128 2304 256 

Sym. RSA/DH ECC 

56 430 112 

80 760 160 

96 1020 192 

128 1620 256 

From Peter Gutmann’s tutorial From RSA’s Bulletin (2000. 4. No 13) 

 Recommendation for RSA/ECC 

 512/112-bit : only for micropayment/smart card 

 1024/160-bit : for short term (1-year) security  

 2048/256-bit : for long term security (CA,RA) 
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Implementation Results 

 RSA Encryption/Decryption 

Encryption Decryption 

PKCS#1-v1.5 1.49 ms 18.05 ms 

PKCS#1-OAEP 1.41 ms 18.09 ms 

 Signature 

Signing Verifying 

PKCS#1-v1.5 18.07 ms 1.24 ms 

PKCS#1-PSS 18.24 ms 1.28 ms 

DSA with SHA1 2.75 ms 9.85 ms 

KCDSA with HAS160 2.42 ms 9.55 ms 

 Modular Exponentiation vs. Scalar Multiplication of EC 

M.E. (1024-bit) S.M. (GF(2162)) S.M. (GF(p)) 

52.01 ms 2.24 ms 1.17 ms 
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Implementation Environments  

 RSA Encryption/Signature 

 N : 1024 bits,   public exponent : 65537 = 216 + 1 

 Decryption/Signing uses Chinese Remainder Theorem (CRT)  

: CRT is roughly 3 times faster  

 

 DSA/KCDSA 

 p : 1024-bit prime, q : 160-bit subprime 

 Signing uses LL-method 

 Verifying uses double-exponentiation 

 

 Modular Exponentiation vs. Scalar Multiplication of EC 

 M.E./S.M. uses Window-method 

 In the same security level, ECC is much faster that RSA/DSA 

PIII 450MHz 

Widows 98 

MSVC++ 6.0  

   with assembly 
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8. Certification and PKI   
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Key Distribution Center (KDC) 

(1) 

(2) 

K 

(1) 

(2) 
K 

(1) 

(2) K 

(3) 
K 

(3) 

K (4) 

 Rely on the absolute security of KDC 

 Ease of centralized management 

 Suitable for enterprise network security 

 But not Scalable; KDC is a potential Bottleneck 



86 

Diffie-Hellman Key Exchange and Message Encryption 

Bob’s  

Public Key/Private Key 

SEND 

SEND 
Diffie-Hellman 

Algorithm 

Alice’s  

Public Key/Private Key 

Encryption 
Encrypted 

Message 

Diffie-Hellman 

Algorithm 

Shared Secret Key IDENTICAL !! Shared Secret Key 

Decryption 
Encrypted 

Message 

SEND 

Encrypted 

Message 

Symmetric 

Key 

Cryptosystem 

Symmetric 

Key 

Cryptosystem 
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Digital Enveloping : Key Transport + Encryption 

Bob’s  

Public Key/Private Key 

Alice’s  

Public Key 

Randomly  

Generated  

Session Key 

Encryption 

Encryption 

Hash Algorithm 

Hash 

Signature 

S
ig

n
in

g
 

Encrypted 

Session Key 

Encrypted 

Message 
Encrypted 

Session Key 

Encrypted 

Message 

SEND 

Signature 

Symmetric Key 

Cryptosystem 

Public Key 

Cryptosystem 
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Bob’s  

Public Key 

Decryption 

Alice’s  

Public Key/Private Key 

Signature 

Decryption 

Hash Algorithm 

Hash1 Hash2 

V
e

rify
in

g
 

Signature Encrypted 

Session Key 

Encrypted 

Message 

RECEIVE 

Encrypted 

Session Key 

Encrypted 

Message 

Digital Enveloping : Key Recovery + Decryption 
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How to Guarantee Authenticity of Peer Public Key? 

 For secure use of public key systems,  
Everyone should be able to obtain the public key of any 

communication peer that he wants to communicate with, in 

such a way that he can be sure that the obtained public key is 

the correct and right public key of the peer 

 

How to guarantee that the public key obtained is the right 

one ? 

 

How to guarantee that the public key obtained is authentic ? 

 

 Using Certificate !   
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What is a Digital Certificate? 

Issuer (CA) 

Subject (Alice) 

Valid period 

Alice‟s pub. Key 

Digital Signature 

Hash Algorithm 

Hash 

Signed with 

Trusted 

private key 

 Digital Certificate 

 A file containing Identification 

information (CA‟s name (Issuer), 

Alice‟s name (Subject), valid period, 

Alice‟s public key, etc)  and digital 

signature signed by trusted third (CA) 

to guarantee its authenticity & integrity   

 

 Certificate Authority (CA) 

 Trusted third party like a government 

for passports 

 CA authenticates that the public key 

belongs to Alice 

 CA creates Alice‟s a Digital Certificate 



Data encrypted using secret key  

exchanged using some public key 

associated with some certificate. 

Certificate 



Certificate 



93 

X.509 V3 Certificate Format 

Certificate  ::=  SEQUENCE  { 

        tbsCertificate        TBSCertificate, 

        signatureAlgorithm    AlgorithmIdentifier, 

        signatureValue        BIT STRING  } 

 

   TBSCertificate  ::=  SEQUENCE  { 

        version          [0]  EXPLICIT Version DEFAULT v1, 

        serialNumber          CertificateSerialNumber, 

        signature             AlgorithmIdentifier, 

        issuer                Name, 

        validity              Validity, 

        subject               Name, 

        subjectPublicKeyInfo  SubjectPublicKeyInfo, 

        issuerUniqueID   [1]  IMPLICIT UniqueIdentifier OPTIONAL, 

                              -- If present, version shall be v2 or v3 

        subjectUniqueID  [2]  IMPLICIT UniqueIdentifier OPTIONAL, 

                              -- If present, version shall be v2 or v3 

        extensions       [3]  EXPLICIT Extensions OPTIONAL 

                              -- If present, version shall be v3 

        } 
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Sample Certificate 

Certificate: 

    Data: 

        Version: v3 (0x2) 

        Serial Number: 3 (0x3) 

        Signature Algorithm: PKCS #1 MD5 With RSA Encryption 

        Issuer: OU=Ace Certificate Authority, O=Ace Industry, C=US 

        Validity: 

            Not Before: Fri Oct 17 18:36:25 1997 

            Not  After: Sun Oct 17 18:36:25 1999 

        Subject: CN=Jane Doe, OU=Finance, O=Ace Industry, C=US 

        Subject Public Key Info: 

            Algorithm: PKCS #1 RSA Encryption 

            Public Key: 

                Modulus: 

                    00:ca:fa:79:98:8f:19:f8:d7:de:e4:49:80:48:e6:2a:2a:86: 

                    ed:27:40:4d:86:b3:05:c0:01:bb:50:15:c9:de:dc:85:19:22: 

                    43:7d:45:6d:71:4e:17:3d:f0:36:4b:5b:7f:a8:51:a3:a1:00: 

                    98:ce:7f:47:50:2c:93:36:7c:01:6e:cb:89:06:41:72:b5:e9: 

                    73:49:38:76:ef:b6:8f:ac:49:bb:63:0f:9b:ff:16:2a:e3:0e: 

                    9d:3b:af:ce:9a:3e:48:65:de:96:61:d5:0a:11:2a:a2:80:b0: 

                    7d:d8:99:cb:0c:99:34:c9:ab:25:06:a8:31:ad:8c:4b:aa:54: 

                    91:f4:15 

                Public Exponent: 65537 (0x10001) 

     Extensions: 

            Identifier: Certificate Type 

                Critical: no 

                Certified Usage: 

                    SSL Client 

            Identifier: Authority Key Identifier 

                Critical: no 

                Key Identifier: 

                    f2:f2:06:59:90:18:47:51:f5:89:33:5a:31:7a:e6:5c:fb:36: 

                    26:c9 

    Signature: 

        Algorithm: PKCS #1 MD5 With RSA Encryption 

        Signature: 

            6d:23:af:f3:d3:b6:7a:df:90:df:cd:7e:18:6c:01:69:8e:54:65:fc:06: 

            30:43:34:d1:63:1f:06:7d:c3:40:a8:2a:82:c1:a4:83:2a:fb:2e:8f:fb: 

            f0:6d:ff:75:a3:78:f7:52:47:46:62:97:1d:d9:c6:11:0a:02:a2:e0:cc: 

            2a:75:6c:8b:b6:9b:87:00:7d:7c:84:76:79:ba:f8:b4:d2:62:58:c3:c5: 

            b6:c1:43:ac:63:44:42:fd:af:c8:0f:2f:38:85:6d:d6:59:e8:41:42:a5: 

            4a:e5:26:38:ff:32:78:a1:38:f1:ed:dc:0d:31:d1:b0:6d:67:e9:46:a8: 

             dd:c4  

-----BEGIN CERTIFICATE----- 

MIICKzCCAZSgAwIBAgIBAzANBgkqhkiG9w0BAQQFADA3MQswCQYD 

VQQGEwJVUzERMA8GA1UEChMITmV0c2NhcGUxFTATBgNVBAsTDF 

N1cHJpeWEncyBDQTAeFw05NzEwMTgwMTM2MjVaFw05OTEwMTgw 

MTM2MjVaMEgxCzAJBgNVBAYTAlVTMREwDwYDVQQKEwhOZXRzY 

2FwZTENMAsGA1UECxMEUHViczEXMBUGA1UEAxMOU3Vwcml5YSB 

TaGV0dHkwgZ8wDQYJKoZIhvcNAQEFBQADgY0AMIGJAoGBAMr6eZiP 

GfjX3uRJgEjmKiqG7SdATYazBcABu1AVyd7chRkiQ31FbXFOGD3wNktb 

f6hRo6EAmM5/R1AskzZ8AW7LiQZBcrXpc0k4du+2Q6xJu2MPm/8WKuM 

OnTuvzpo+SGXelmHVChEqooCwfdiZywyZNMmrJgaoMa2MS6pUkfQVAg 

MBAAGjNjA0MBEGCWCGSAGG+EIBAQQEAwIAgDAfBgNVHSMEGDAW 

gBTy8gZZkBhHUfWJM1oxeuZc+zYmyTANBgkqhkiG9w0BAQQFAAOBgQ 

BtI6/z07Z635DfzX4XbAFpjlRl/AYwQzTSYx8GfcNAqCqCwaSDKvsuj/vwbf 

91o3j3UkdGYpcd2cYRCgKi4MwqdWyLtpuHAH18hHZ5uvi00mJYw8W2w 

UOsY0RC/a/IDy84hW3WWehBUqVK5SY4/zJ4oTjx7dwNMdGwbWfpRqjd 

1A== 

-----END CERTIFICATE-----  



Certification Path 
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How to Revoke a Certificate? 

 Certificate Revocation List (CRL) 

A digital document which has a list of revoked certificates  

Signed by CA   

Defined in X.509 v2 

 

 Why revoke a certificate? 

When the user leave (retire from) the organization 

Lost the private key, need to use a new key 
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Certificate Revocation List 
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X.509 V2 Certificate Revocation List (CRL) Format 

CertificateList  ::=  SEQUENCE  { 

        tbsCertList           TBSCertList, 

        signatureAlgorithm    AlgorithmIdentifier, 

        signatureValue        BIT STRING  } 

 

   TBSCertList  ::=  SEQUENCE  { 

        version                  Version OPTIONAL, 

                                      -- if present, shall be v2 

        signature               AlgorithmIdentifier, 

        issuer                   Name, 

        thisUpdate               Time, 

        nextUpdate               Time OPTIONAL, 

        revokedCertificates      SEQUENCE OF SEQUENCE  { 

              userCertificate         CertificateSerialNumber, 

              revocationDate           Time, 

              crlEntryExtensions    Extensions OPTIONAL 

                                             -- if present, shall be v2 

                      }  OPTIONAL, 

        crlExtensions            [0]  EXPLICIT Extensions OPTIONAL 

                                            -- if present, shall be v2 

                                  } 
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웹 시스템 

Switching HUB 

가입자  
등록시스템 

운영자  
관리 시스템 

상태정보  
생성 시스템 디렉터리  

시스템 

FW/IDS 

DBMS 

인증서 생성  
관리 시스템 키 관리  

시스템 

인터넷/공중망/전용망 

가입자  
등록시스템 

본사 
인트라넷 

지사 

Overall Configuration of CA System 
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Public Key Infrastructure (PKI) Architecture 

End entity 

Cert/CRL 

repository 

RA 

CA 

CA 

PKI users 

PKI management 
entity 

Certificate  

Authority Certificate / CRL publish 

Certificate  

publish Registration  

Authority 

Operational / Management  

Transactions 

Management  

Transactions 

 PKI is the hardware, software, people, policies, & procedures  

       needed to create, manage, store, distribute, & revoke certificates 
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PKI Trust Relationship 

CA1 CA2 

CA11 CA12 CA21 CA22 

CA 

User1 User2 

CA2 

CA3 

CA1 

CA5 

CA6 

CA7 

CA4 

User1 

User2 

Hierarchical Structure Network Structure 



102 

How a PKI works ? 

RA 

Generate Registration Info & Keypair  

Send the Public Key and Registration Info to RA 

Certificate  

Request  

CA signs a valid request 

Send the signed  

request back to RA 

RA delivers the  

Certificate to user 

Cert is published  

in Directory 

Applications using Certificates can : 

• Look up certificate details 

• Perform revocation checks 

• Check certificate validity 

• Check signatures 

• Decrypt data 

Applications and  

other users Directory 
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Certification Hierarchy 

Root CA 

Issuer = Root 

Subject = Root 

Subordinate CA 

Issuer = Root 

Subject = Taejon 

Subordinate CA 

Issuer = Root 

Subject = Future 

Subordinate CA 

Issuer = Taejon 

Subject = KAIST 

End Entity 

Issuer = Future 

Subject = Future  

                 Employee 

End Entity 

Issuer = Taejon 

Subject = Taejon  

                 Citizen 

End Entity 

Issuer = Future 

Subject = Future  

                 Employee 

End Entity 

Issuer = KAIST 

Subject = KAIST  

                 Student 

EE certificates are signed  

by their own CA 

Sub CA certificate is signed   

by its superior CA 

Root CA certificate is  

self-signed   

If you trust the CA that 

signed the certificate,  

you can trust the certificate 
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Korean PKI Structure  

전자서명 인증관리센터 

http://www.kisa.or.kr/kisa/kcac/jsp/kcac.jsp 
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Korean PKI Structure  

전자서명법 제4조의 규정에 의하여 지정된 공인인증기관  
• 한국정보인증(주) http://www.signgate.com 

• (주)코스콤 http://www.signkorea.com 

• 금융결제원 http://www.yessign.or.kr 

• 한국정보사회진흥원 http://sign.nca.or.kr 

• 한국전자인증(주) http://gca.crosscert.com 

• 한국무역정보통신 http://www.tradesign.net 
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Homework #6 

  Solve the exercises in this lecture 

Exercise 1: factorization using the quadratic sieve algorithm 

Exercise 2: Solve DLP using index calculus 

Exercise 3: RSA construction 

 


