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Divisibility 

 Let Z denote the set of all integers.  Z={…,-3,-2,-1,0,1,2,3,…} 

 Division Theorem (a,b Z) 

For nonzero b,  q,r  Z s.t. a=qb+r, 0 ≤ r <b   

q: quotient, r: remainder    

 Divide 

b divides a, or b|a iff  cZ s.t. a=bc (i.e. r=0)  

If a|b, then a|bc 

If a|b and a|c, then a|(bx+cy) 

If a|b and b|a then a= b (antisymmetry)  

If a|b and b|c, then a|c (transitivity)  

 

b|a 
b divides a 
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Prime Numbers  

 Prime  

An integer p is called prime if its divisors are 1 and p 

A number that is divisible only by 1 and itself 

2,3,5,7,11,13,17,19,23,29,31,…..  

If a prime p divides ab, then p|a or p|b 

 

 Composite number 

Any number that is not prime 
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Prime Number Theorem   

 There are infinitely many prime numbers  

 

 Prime number theorem  

 

 

 

 

 

 Example: Estimate the number of 100-digit primes  
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Sieve of Eratosthenes 

 Sieve of Eratosthenes : Determine all primes smaller than N  

S1. Create an initial set of all numbers NN={2,3,4,…,N-1}   

S2. For all integers n < sqrt(N), remove all multiples of n from the above NN 

S3. The final reduced set NN contains all primes smaller than N 

 

 

 

  

 

 

 

 

 Exercise 1: Obtain all primes less than 200  
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Factorization 

Factorization  

Any positive integer can be uniquely factored into the product of primes   

 

 

 

 504 = 23327, 1125 = 3253 
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lcm and gcd  

 lcm(a,b)    - least common multiple 

lcm of a and b is the smallest integer which is divisible by both a and b 

 

 gcd(a,b)    - greatest common divisor  

gcd of a and b is the largest integer which divides both a and b 

Example: gcd(24,60)=12, gcd(5,7)=1 

a and b are relatively prime if gcd(a,b)=1  

 

 Finding gcd(a,b)  

Using the factorization of a and b 

   576=2632, 135=335, gcd(576,135)=32 

Using the Euclidean algorithm  
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Euclidean Algorithm    - find gcd using division and remainder  

 Find gcd(a,b)  

Initialize r0=a, r1=b 

Computes the following sequence of equations  

r0=q1r1+r2  

r1=q2r2+r3 

r2=q3r3+r4  

…..  

rn-2=qn-1rn-1+rn     where rn=0 

Then gcd(a,b) = rn-1   
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Euclidean Algorithm    - find gcd using division and remainder  

Example : gcd(3465,882)=63  

 

3465 882 3 

2646 

819 

1 

819 

63 

13 

819 

0 

3465=3 x 882+819 

 

882=1 x 819+63 

 

819=13 x 63+0 
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Extended Euclidean Algorithm 

Extended Euclidean Algorithm 

Let d=gcd(a,b). Then there exist integers x, y such that ax+by=d.   

If a and b are relatively prime, then there exist x, y such that ax+by=1 
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ax+by=d 

gcd(10,7) = 1    

   

gcd(367,221) = 1      

Example 

1 = (-2)(10) + (3)(7).  

 

1 = (-56)(367) + (93)(221)    
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Extended Euclidean Algorithm 

 Easier calculation algorithm by hand  

http://marauder.millersville.edu/~bikenaga/absalg/exteuc/exteucex.html 

 

 Example: for gcd(187,102) = 17  

 

 

(next x) = (next-to-last x) - q (last x)  

(next y) = (next-to-last y) - q (last y)  

17 = (187,102) = (-1)(187) + (2)(102).  
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Extended Euclidean Algorithm 

 Exercise 2: For the following pair of numbers  

1. Find gcd using Euclidean algorithm  

2. Solve ax+by=d using Extended Euclidean algorithm  

 

1. gcd(55,123) 

2. gcd(41,789)  

3. gcd(352,124) 

4. gcd(1124,368) 

5. gcd(2733,725) 
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Congruence 

 Definition) Congruence  

 a  b mod n iff n|(a-b)  

 a = b+kn for some integer k 

 a%n=b%n 

 a is congruent to b modulo n  

 

 a  a 

 a  b iff b  a 

 If a  b and b  c then a  c 

 

 Residue Class Group: Zn={xZ| 0 ≤ x< n} 

Addition: a+b = (a+b mod n) 

Multiplication: ab =(ab mod n) 

Closed under addition, subtraction, and multiplication 

Closed under division if n is prime 

32 2 mod 5 

-12 37 mod 7 
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Modular Arithmetic  

 Modular addition 

 Modular subtraction 

 

 Modular multiplication  

Fill out the table  

x 1 2 3 4 5 6 7 8 9 10 

1 1 2                 

2 2 4                 

3     9 1 4 7         

4                     

5                     

6                     

7                     

8                     

9                     

10                     

Modular multiplication in mod 11 

Compute axb mod 11 

a 

b 
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Modular Arithmetic  

 Modular exponentiation   

Fill out the table ^ 1 2 3 4 5 6 7 8 9 10 

1                     

2                     

3 3 9 5 4 1 3 9 5 4 1 

4                     

5                     

6                     

7                     

8                     

9                     

10                     

Modular exponentiation in mod 11 

Compute ab mod 11 

a 

b 
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Modular Arithmetic  

Modular exponentiation in mod 13 

Compute ab mod 13 

a 

b 

a^b 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 1 1 1 1 1 1 1 1 1 

2 2 4 8 3 6 12 11 9 5 10 7 1 

3 3 9 1 3 9 1 3 9 1 3 9 1 

4 4 3 12 9 10 1 4 3 12 9 10 1 

5 5 12 8 1 5 12 8 1 5 12 8 1 

6 6 10 8 9 2 12 7 3 5 4 11 1 

7 7 10 5 9 11 12 6 3 8 4 2 1 

8 8 12 5 1 8 12 5 1 8 12 5 1 

9 9 3 1 9 3 1 9 3 1 9 3 1 

10 10 9 12 3 4 1 10 9 12 3 4 1 

11 11 4 5 3 7 12 2 9 8 10 6 1 

12 12 1 12 1 12 1 12 1 12 1 12 1 
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Modular Arithmetic  

 Modular division 

Solve: 2x+7=3 (mod 17) 2x=-4 (mod 17)  x=-2 (mod 17)=15  

 

 You can divide by a mod n only when gcd(a,n)=1   

Find the multiplicative inverse of a mod n = a-1 and then multiply a-1 

b/a mod n = b*a-1 mod n 

If ac=1 mod n, then c=a-1 mod n 

Compute a-1 mod n using the extended Euclidean algorithm  

For gcd(n,a)=1, solve ax+ny=1, then x=a-1 mod n 
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Efficient Modular Exponentiation 

 How to compute  ax (mod n) efficiently?  

Multiply a x times? No good  

 

 21234 mod 789 = 21024+128+64+16+2 mod 789 

   = 21024 * 2128 * 264 * 216 * 22 mod 789 

   = 286 * 559 * 367 * 49 * 4 mod 789  

   = 481 mod 789 
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Square and Multiply Algorithm  

 How to compute  y=ax (mod n) efficiently?  

1. binary representation of x=xrxr-1…x1x0 

2. Let y=a 

3. For i from r-1 to 0 

        y=y2 mod n 

        If xi=1, then y=ya mod n 

4. Output y 

 Compute 721 mod 11,   21=10101(2), r=4  

i      bit     y2          y*a         y 

4 1                                  7 

3      0     72=5       -             5 

2      1     52=3    3*7=10    10 

1      0    102=1      -             1 

0      1      12=1    1*7=7       7 Output 7 as the result 

721 mod 11 

= 716+4+1 mod 11 

= (((72)27)2)27 mod 11 
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Chinese Remainder Theorem (CRT) 

 Chinese Remainder Theorem  

Suppose gcd(m,n)=1. Given integers a and b, there exists exactly one solution x 

(mod mn) to the simultaneous congruences  

x=a mod m, x=b mod n  

 

     proof)  

there exists s, t such that ms+nt=1 

ms=1 mod n, nt=1 mod m  

Let x=ant+bms, then  

x=ant mod m=a mod m 

x=bms mod n=b mod n 
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Chinese Remainder Theorem (CRT) 

 Efficient algorithm to compute x   

1. m=m1m2…mn = 5*7*11 = 385 

2. M1 = m/m1 = 385/5 = 7*11 = 77 

    M2 = m/m2 = 385/7 = 5*11 = 55 

    M3 = m/m3 = 385/11 = 5*7 = 35 

3. N1=M1
-1 mod m1=77-1 mod 5=3 

    N2=M2
-1 mod m2=55-1 mod 7=6 

    N3=M3
-1 mod m3=35-1 mod 11=6  

4. T=b1M1N1+b2M2N2+b3M3N3 mod m 

       =4*77*3+3*55*6+6*35*6 mod 385=94 

Example: Find x such that 

  x=4 mod 5 

  x=3 mod 7 

  x=6 mod 11 

Find a number x which satisfies  

  x=b1 mod m1 

   . . . . . 

  x=bn mod mn 

Use extended Euclidean algorithm 
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Chinese Remainder Theorem (CRT) 

Exercise 3: find a number which satisfies  

 

1. x = 3 mod 11 = 6 mod 7 = 8 mod 13  

 

 

2. x = 5 mod 31 = 6 mod 17 = 8 mod 29  
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Euler phi function: (n) 

 Euler phi function (or Euler totient function): (n) 

The number of integers in [1, n], which are relatively prime to n 

If p is prime, (p) = p-1 

(pe) = pe – pe-1 = pe-1(p-1) for prime p >2 

if gcd(n, m) = 1, (nm) = (n) . (m) (multiplicative property) 

So, for primes p & q, (pq) = (p) . (q) = (p-1)(q-1) 
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Fermat’s Theorem and Euler’s Theorem  

 Fermat’s Theorem: Let p be a prime 

If gcd(x, p) = 1,  then xp-1 = 1 mod p 

If a = b mod p-1, then xa = xb mod p for all integers x 

xp = x mod p for all integers x 

 

 Euler’s Theorem: Let n be an integer 

 If gcd(x, n) = 1,  then x(n) = 1 mod n 

 If n is a product of distinct primes and a = b mod (n), then xa = 

xb mod n for all integers x 

 xn = x mod n for all integers x 
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Legendre Symbol 

 Quadratic congruence for a prime modulus p 

        x2 = a (mod p)    where p is a prime  

 

        It will have  

            1. one solution if a=0 (mod p) 

            2. two solutions if a is a quadratic residue modulo p 

            3. no solution if a is a quadratic non-residue modulo p   

 

 Legendre symbol is defined as  
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Quadratic Residue 

 Example in Z13*   

 

 

 

 

 

 

 

 QR = {1, 3, 4, 9, 10, 12} 

 

 

 QNR={2, 5, 6, 7, 8, 11} 

12  1     mod 13    72  10   mod 13 

22  4     mod 13      82  12   mod 13 

32  9     mod 13     92  3     mod 13 

42  3     mod 13  102  9     mod 13 

52  12   mod 13   112  4     mod 13 

62  10   mod 13  122  1     mod 13 

113mod313mod3
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Jacobi Symbol 

Generalization of Legendre symbol   

Quadratic congruence for an arbitrary modulus n 

        x2 = a (mod n)    where n=p1…pr  
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Group  

Definition) A group (G,*) consists of a set G with a binary operation * on 

G satisfying the following three axioms. 

 

   1. a*(b*c)=(a*b)*c for all a,b,c G : associative  

   2. There is an element 1  G called the identity element s.t. a*1=1*a=a  

   3. For each a G there exists an element a-1 (inverse) s.t. a*a-1=a-1*a=1 

 

A group G is abelian (or commutative) if, furthermore, 

   4. a*b=b*a for all a,b  G  
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Ring  

Definition) A ring (R,+,x) consists of a set R with two binary operations 

arbitrarily denoted + (addition) and x (multiplication) on R satisfying 

the following axioms. 

 

1. (R,+) is an abelian group with identity denoted 0.   

2. The operation x is associative. That is ax(bxc)=(axb)xc for all 

a,b,c  R.  

3. There is a multiplicative identity denoted 1, s.t. 1xa=ax1=a for 

all a R.  

4. The operation x is distributive over +. ax(b+c)=(axb)+(axc) for 

all a,b,c  R.  

 

The ring R is a commutative ring if axb=bxa for all a,b  R.  
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Field and Finite Field 

Definition) A field is a commutative ring in which all non-zero elements 

have multiplicative inverses.  

  

Definition) A finite field (Galois Field) is a field F which contains a finite 

number of elements.   

  

Galois Field GF(p)=Zp with prime p 

    addition, subtraction, multiplication, and division by non-zero 

elements are all well-defined.  

 arithmetic modulo p.  

Galois Field GF(qn) with prime q and degree n  

 arithmetic modulo irreducible polynomials of degree n whose 

coefficients are integers modulo q. 
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Order of Group 

 Order of group in modular arithmetic 

 x = y mod n : x is congruent to y modulo n; n divides (x-y) 

 Zn = {0, 1, 2, . . ., n-1}  

 Zn
* = { x  Zn | gcd(x, n) = 1}: multiplicative group of Zn 

 Order of Zn
* = the number of elements in Zn

* = | Zn
* | = (n) 

 Order of x  Zn
* = smallest integer r such that xr = 1 mod n 

 Ord(x) for any x  Zn
* = a divisor of (n) 
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Cyclic Group 

 Let p be a prime 

Zp = {0, 1, 2, …, p-1}  

Zp
* = { x  Zp | gcd(x, p) = 1} = {1, 2, …, p-1} = Zp - {0} 

Order of Zp = | Zp
* | = (p) = p-1 

Order of an element   Zp
* = Ord() = a divisor of p-1 

 is a generator / primitive element of Zp
* if Ord() = (p) = p-1 

 Then Zp
* = {i | i = 0, 1, …, p-2} : cyclic group 

 For any y  Zp
*, there exists an integer x  [0, p-2] such that y 

= x mod p 
 

 Let p be a prime and q be a prime divisor of p-1, I.e., p-1= kq 

Let g be an element of order q, I.e., g  1and gq = 1 mod p 

<g> = {gi | i = 0, 1, …, q-1}  Zp
* : a multiplicative subgroup of Zp

* 

That is, for any y  <g>, there exists an integer x  [0, q-1] such 

that y = gx mod p 
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Cyclic Group 

 Example: p = 13 

Z13 = {0, 1, 2, …, 12}  

Z13
* = {1, 2, …, 12}; | Zp

* | = 12 

 

 = 6 : a generator of Z13
*  

      i 0    1    2    3    4    5    6    7    8    9  10  11  

i mod 13 1    6  10    8    9    2  12    7    3    5    4  11 

 

Order of x  Z13
* : a divisor of 12 = 2.2.3 

      x 1    2    3    4    5    6    7    8    9  10  11  12 

Ord(x) 1   12   3    6    4  12  12    4    3    6  12    2 

 

 Exercise 4. Find the order of x  Z31
*   
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Z13* 

a 

b 

a^b 1 2 3 4 5 6 7 8 9 10 11 12 

1 1 1 1 1 1 1 1 1 1 1 1 1 

2 2 4 8 3 6 12 11 9 5 10 7 1 

3 3 9 1 3 9 1 3 9 1 3 9 1 

4 4 3 12 9 10 1 4 3 12 9 10 1 

5 5 12 8 1 5 12 8 1 5 12 8 1 

6 6 10 8 9 2 12 7 3 5 4 11 1 

7 7 10 5 9 11 12 6 3 8 4 2 1 

8 8 12 5 1 8 12 5 1 8 12 5 1 

9 9 3 1 9 3 1 9 3 1 9 3 1 

10 10 9 12 3 4 1 10 9 12 3 4 1 

11 11 4 5 3 7 12 2 9 8 10 6 1 

12 12 1 12 1 12 1 12 1 12 1 12 1 

1 

12 

3 

6 

4 

12 

12 

4 

3 

6 

12 

2 

Ord(a) 
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Homework #5 

 Solve the exercises appeared in this lecture. 

 

1. Exercise 1 on finding prime numbers  

2. Exercise 2 on Euclidean / Extended Euclidean algorithm  

3. Exercise 3 on Chinese Remainder Theorem  

4. Exercise 4 on Order in cyclic group  


