Introduction to Information Security

Lecture 5: Number Theory

2007.6.

Prof. Byoungcheon Lee sultan (at) joongbu . ac . kr

Information and Communications University

Contents

- 1. Number Theory
 - Divisibility
 - Prime numbers and factorization
 - ♦gcd and lcm
 - Euclidean algorithm, Extended Euclidean algorithm
 - Congruence and modular arithmetic
 - Chinese remainder theorem
 - Fermat's theorem and Euler's theorem
 - Legendre symbol and Jacobi symbol
- 2. Finite Fields
 - ✤Group, Ring
 - ✤Field, Finite field
 - ♦ Cyclic group

Divisibility

- $\bigstar \text{ Let } Z \text{ denote the set of all integers. } Z = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$
- ♦ Division Theorem $(a, b \in \mathbb{Z})$

♦ For nonzero b, $\exists q, r \in Z$ s.t. a=qb+r, $0 \leq r \leq b$

✤q: quotient, r: remainder

Divide

♦ divides a, or b/a iff $\exists c \in Z$ s.t. a=bc (i.e. r=0)

•If a/b, then a/bc

•If a/b and a/c, then a/(bx+cy)

•If a/b and b/a then $a = \pm b$ (antisymmetry)

•If a/b and b/c, then a/c (transitivity)

Prime Numbers

Prime

An integer p is called prime if its divisors are ±1 and ±p
A number that is divisible only by 1 and itself
2,3,5,7,11,13,17,19,23,29,31,.....
If a prime p divides ab, then p/a or p/b

Composite number

✤Any number that is not prime

Prime Number Theorem

✤ There are infinitely many prime numbers

Prime number theorem

$$\pi(x) \approx \frac{x}{\ln x}$$
: number of primes less than x
 $\lim_{n \to \infty} \frac{\pi(x) \ln(x)}{x} = 1$

Example: Estimate the number of 100-digit primes

$$\pi(10^{100}) - \pi(10^{99}) \approx \frac{10^{100}}{\ln 10^{100}} - \frac{10^{99}}{\ln 10^{99}} \approx 3.9 \times 10^{97}$$

Sieve of Eratosthenes

Sieve of Eratosthenes : Determine all primes smaller than *N*

S1. Create an initial set of all numbers $N_N = \{2, 3, 4, \dots, N-1\}$

S2. For all integers n < sqrt(N), remove all multiples of n from the above N_N

S3. The final reduced set N_N contains all primes smaller than N

***** Exercise 1: Obtain all primes less than 200

Factorization

Factorization

Any positive integer can be uniquely factored into the product of primes

$$n=\prod_{p\in P}p^{e_P}$$

♦ 504 = $2^{3}3^{2}7$, $1125 = 3^{2}5^{3}$

Icm and gcd

* lcm(a,b) - least common multiple

lcm of a and b is the smallest integer which is divisible by both a and b

★ gcd(a,b) - greatest common divisor
★ gcd of a and b is the largest integer which divides both a and b
★ Example: gcd(24,60)=12, gcd(5,7)=1
★ a and b are relatively prime if gcd(a,b)=1

Finding gcd(a,b)
Using the factorization of a and b
576=2⁶3², 135=3³5, gcd(576,135)=3²
Using the Euclidean algorithm

Euclidean Algorithm - find gcd using division and remainder

• Find gcd(a,b)

♦Initialize $r_0 = a$, $r_1 = b$

Computes the following sequence of equations

$$r_{0} = q_{1}r_{1} + r_{2}$$

$$r_{1} = q_{2}r_{2} + r_{3}$$

$$r_{2} = q_{3}r_{3} + r_{4}$$
....
$$r_{n-2} = q_{n-1}r_{n-1} + r_{n} \text{ where } r_{n} = 0$$

$$\text{Then } gcd(a,b) = r_{n-1}$$

$$r_{n-2} = q_{n-1}(2) \times r_{n-1}$$

$$r_0 = a = (?) \times r_{n-1}$$

 $r_1 = b = (??) \times r_{n-1}$

Euclidean Algorithm - find gcd using division and remainder

♦Example : *gcd*(*3465,882*)=*63*

Extended Euclidean Algorithm

Extended Euclidean Algorithm

Let d=gcd(a,b). Then there exist integers x, y such that ax+by=d.
If a and b are relatively prime, then there exist x, y such that ax+by=1

$$a = q_{1}b + r_{2}$$

$$b = q_{2}r_{2} + r_{3}$$

$$r_{2} = q_{3}r_{3} + r_{4}$$

$$r_{3} = b - q_{2}r_{2} = -q_{2}a + (1 + q_{1}q_{2})b$$

$$r_{4} = r_{2} - q_{3}r_{3} = (?)a + (??)b$$

$$\dots$$

$$r_{n-2} = q_{n-1}r_{n-1}$$

$$r_{n-1} = (?)a + (??)b \longrightarrow ax+by=d$$

Example

gcd(10,7) = 1 \longrightarrow 1 = (-2)(10) + (3)(7).gcd(367,221) = 1 \longrightarrow 1 = (-56)(367) + (93)(221)

Extended Euclidean Algorithm

Easier calculation algorithm by hand

http://marauder.millersville.edu/~bikenaga/absalg/exteuc/exteucex.html

Example: for gcd(187,102) = 17

(next x) = (next-to-last x) - q (last x)(next y) = (next-to-last y) - q (last y)

17 = (187, 102) = (-1)(187) + (2)(102).

Extended Euclidean Algorithm

- Exercise 2: For the following pair of numbers
 - 1. Find gcd using Euclidean algorithm
 - 2. Solve ax+by=d using Extended Euclidean algorithm
 - 1. gcd(55,123)
 - 2. gcd(41,789)
 - *3. gcd*(*352*,*124*)
 - 4. gcd(1124,368)
 - 5. gcd(2733,725)

Congruence

Definition) Congruence
a = b mod n iff n/(a-b)
a = b+kn for some integer k
a%n=b%n
a is congruent to b modulo n

 $32 \equiv 2 \mod 5$ $-12 \equiv 37 \mod 7$

a = a a = b iff b = a If a = b and b = c then a = c

 Residue Class Group: Z_n={x∈Z| 0 ≤ x< n} Addition: a+b = (a+b mod n) Multiplication: ab =(ab mod n) Closed under addition, subtraction, and multiplication Closed under division if n is prime

- Modular addition
- Modular subtraction
- Modular multiplication
 Fill out the table

Modular multiplication in mod 11 Compute axb mod 11

b

Modular exponentiation
 Fill out the table

Modular exponentiation in mod 11 Compute *a^b mod 11*

а

a^b	1	2	3	4	5	6	7	8	9	10	11	12
1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	4	8	3	6	12	11	9	5	10	7	1
3	3	9	1	3	9	1	3	9	1	3	9	1
4	4	3	12	9	10	1	4	3	12	9	10	1
5	5	12	8	1	5	12	8	1	5	12	8	1
6	6	10	8	9	2	12	7	3	5	4	11	1
7	7	10	5	9	11	12	6	3	8	4	2	1
8	8	12	5	1	8	12	5	1	8	12	5	1
9	9	3	1	9	3	1	9	3	1	9	3	1
10	10	9	12	3	4	1	10	9	12	3	4	1
11	11	4	5	3	7	12	2	9	8	10	6	1
12	12	1	12	1	12	1	12	1	12	1	12	1

b

Modular exponentiation in mod 13 Compute *a^b mod 13*

Modular division

Solve: $2x+7=3 \pmod{17} \rightarrow 2x=-4 \pmod{17} \rightarrow x=-2 \pmod{17}=15$

You can divide by a mod n only when gcd(a,n)=1

•Find the multiplicative inverse of a mod $n = a^{-1}$ and then multiply a^{-1}

 $b/a \mod n = b^*a^{-1} \mod n$

If ac=1 mod n, then c=a⁻¹ mod n

Compute a⁻¹ mod n using the extended Euclidean algorithm

♦ For gcd(n,a)=1, solve ax+ny=1, then $x=a^{-1} \mod n$

Efficient Modular Exponentiation

• How to compute $a^x \pmod{n}$ efficiently?

Multiply a x times? No good

 $2^{1234} \mod 789 = 2^{1024+128+64+16+2} \mod 789$ = $2^{1024} * 2^{128} * 2^{64} * 2^{16} * 2^{2} \mod 789$ = 286 * 559 * 367 * 49 * 4 mod 789 = 481 mod 789

Square and Multiply Algorithm

• How to compute $y = a^x \pmod{n}$ efficiently?

- 1. binary representation of $x=x_rx_{r-1}...x_1x_0$
- 2. Let y=a
- 3. For i from r-1 to 0

y=y² mod n

If x_i=1, then y=ya mod n

4. Output y

Compute 7²¹ mod 11, 21=10101₍₂₎, r=4

 $= 7^{16+4+1} \mod 11$ y² bit y*a y $= (((7^2)^27)^2)^27 \mod 11$ 7 4 1 3 7²=5 5 0 2 1 $5^2=3$ $3^*7=10$ 10 1 $0 \quad 10^2 = 1$ 1 0 1²=1 1*7=7 7 Output 7 as the result 1

7²¹ mod 11

Chinese Remainder Theorem (CRT)

Chinese Remainder Theorem

Suppose gcd(m,n)=1. Given integers *a* and *b*, there exists exactly one solution *x* (mod *mn*) to the simultaneous congruences $x=a \mod m, x=b \mod n$

proof) \diamond there exists *s*, *t* such that ms+nt=1 $\diamond ms=1 \mod n$, $nt=1 \mod m$ $\diamond Let x=ant+bms$, then $\diamond x=ant \mod m=a \mod m$ $\diamond x=bms \mod n=b \mod n$

Chinese Remainder Theorem (CRT)

Find a number x which satisfies
x=b ₁ mod m ₁
x=b _n mod m _n

Example: Find x such that x=4 mod 5 x=3 mod 7 x=6 mod 11

★ Efficient algorithm to compute x
1. $m=m_1m_2...m_n = 5^*7^*11 = 385$ 2. $M_1 = m/m_1 = 385/5 = 7^*11 = 77$ $M_2 = m/m_2 = 385/7 = 5^*11 = 55$ $M_3 = m/m_3 = 385/11 = 5^*7 = 35$ 3. $N_1 = M_1^{-1} \mod m_1 = 77^{-1} \mod 5 = 3$ $M_2 = M_2^{-1} \mod m_2 = 55^{-1} \mod 7 = 6$ $N_3 = M_3^{-1} \mod m_3 = 35^{-1} \mod 11 = 6$ 4. $T = b_1 M_1 N_1 + b_2 M_2 N_2 + b_3 M_3 N_3 \mod m$ $= 4^*77^*3 + 3^*55^*6 + 6^*35^*6 \mod 385 = 94$

Chinese Remainder Theorem (CRT)

Exercise 3: find a number which satisfies

1. $x = 3 \mod 11 = 6 \mod 7 = 8 \mod 13$

2. $x = 5 \mod 31 = 6 \mod 17 = 8 \mod 29$

Euler phi function: $\phi(n)$

• Euler phi function (or Euler totient function): $\phi(n)$

The number of integers in [1, n], which are relatively prime to n

> If p is prime, $\phi(p) = p-1$

 $>\phi(p^{e}) = p^{e} - p^{e-1} = p^{e-1}(p-1)$ for prime p >2

 \succ if gcd(n, m) = 1, ϕ (nm) = ϕ (n) . ϕ (m) (multiplicative property)

So, for primes p & q, $\phi(pq) = \phi(p) \cdot \phi(q) = (p-1)(q-1)$

Fermat's Theorem and Euler's Theorem

Fermat's Theorem: Let p be a prime

If gcd(x, p) = 1, then x^{p-1} = 1 mod p
If a = b mod p-1, then x^a = x^b mod p for all integers x
x^p = x mod p for all integers x

Euler's Theorem: Let n be an integer

- > If gcd(x, n) = 1, then $x^{\phi(n)} = 1 \mod n$
- If n is a product of distinct primes and a = b mod φ(n), then x^a = x^b mod n for all integers x
- \succ xⁿ = x mod n for all integers x

Legendre Symbol

Quadratic congruence for a prime modulus p
 x² = a (mod p) where p is a prime

It will have

- 1. one solution if a=0 (mod p)
- 2. two solutions if a is a quadratic residue modulo p
- 3. no solution if a is a quadratic non-residue modulo p
- Legendre symbol is defined as

$$\left(\frac{a}{p}\right) = \begin{cases} 0 & \text{If } a = 0 & \text{If is computed by} \\ 1 & \text{If } a \text{ is a QR} \\ -1 & \text{If } a \text{ is a QNR} & \left(\frac{a}{p}\right) = a^{\frac{1}{2}(p-1)} \mod p \end{cases}$$

Quadratic Residue

Example in Z₁₃*

$$1^2 \equiv 1 \mod 13$$
 $7^2 \equiv 10 \mod 13$ $2^2 \equiv 4 \mod 13$ $8^2 \equiv 12 \mod 13$ $3^2 \equiv 9 \mod 13$ $9^2 \equiv 3 \mod 13$ $4^2 \equiv 3 \mod 13$ $10^2 \equiv 9 \mod 13$ $5^2 \equiv 12 \mod 13$ $11^2 \equiv 4 \mod 13$ $6^2 \equiv 10 \mod 13$ $12^2 \equiv 1 \mod 13$

♦ QR = {1, 3, 4, 9, 10, 12}
$$\begin{pmatrix}
\frac{3}{13} \\
= 3^{\frac{1}{2}^{(13-1)}} \mod 13 = 3^{6} \mod 13 = 1$$
♦ QNR={2, 5, 6, 7, 8, 11}
$$\begin{pmatrix}
\frac{2}{-1} \\
= 2^{\frac{1}{2}^{(13-1)}} \mod 13 = 2^{6} \mod 13 = -1$$

NR={2, 5, 6, 7, 8, 11}
$$\left(\frac{2}{13}\right) = 2^{2^{(13-1)}} \mod 13 = 2^6 \mod 13 = -1$$

Jacobi Symbol

Generalization of Legendre symbol

Quadratic congruence for an arbitrary modulus n

```
x^2 = a \pmod{n} where n = p_1 \dots p_r
```

It is computed by

$$\left(\frac{a}{n}\right) = \prod_{i=1}^{r} \left(\frac{a}{p_i}\right)$$

Group

Definition) A group (G,*) consists of a set G with a binary operation * on G satisfying the following three axioms.

- 1. $a^{(b^{c})}=(a^{b})^{c}$ for all $a,b,c \in G$: associative
- 2. There is an element $1 \in G$ called the identity element s.t. a*1=1*a=a
- 3. For each $a \in G$ there exists an element a^{-1} (inverse) s.t. $a^*a^{-1}=a^{-1}*a=1$

A group G is abelian (or commutative) if, furthermore,

4. a*b=b*a for all $a,b \in G$

Ring

Definition) A ring (R,+,x) consists of a set R with two binary operations arbitrarily denoted + (addition) and x (multiplication) on R satisfying the following axioms.

- 1. (R,+) is an abelian group with identity denoted 0.
- The operation x is associative. That is ax(bxc)=(axb)xc for all a,b,c ∈ R.
- 3. There is a multiplicative identity denoted 1, s.t. 1xa=ax1=a for all $a \in R$.
- The operation x is distributive over +. ax(b+c)=(axb)+(axc) for all a,b,c ∈ R.

The ring R is a commutative ring if axb=bxa for all $a,b \in R$.

Field and Finite Field

Definition) A field is a commutative ring in which all non-zero elements have multiplicative inverses.

Definition) A finite field (Galois Field) is a field F which contains a finite number of elements.

Galois Field GF(p)=Z_p with prime p addition, subtraction, multiplication, and division by non-zero elements are all well-defined. arithmetic modulo p.
Galois Field GF(qⁿ) with prime q and degree n arithmetic modulo irreducible polynomials of degree n whose coefficients are integers modulo q.

Order of Group

Order of group in modular arithmetic

$$\succ$$
 Z_n = {0, 1, 2, ..., n-1}

- \succ $Z_n^* = \{ x \in Z_n | gcd(x, n) = 1 \}$: multiplicative group of Z_n
- > Order of Z_n^* = the number of elements in Z_n^* = $|Z_n^*| = \phi(n)$
- > Order of $x \in Z_n^*$ = smallest integer r such that $x^r = 1 \mod n$
- > Ord(x) for any $x \in Z_n^* = a$ divisor of $\phi(n)$

Cyclic Group

✤ Let p be a prime

 $\begin{array}{l} \geq Z_p = \{0, 1, 2, ..., p-1\} \\ \geq Z_p^* = \{x \in Z_p \mid \gcd(x, p) = 1\} = \{1, 2, ..., p-1\} = Z_p - \{0\} \\ \geq \text{Order of } Z_p = \mid Z_p^* \mid = \phi(p) = p-1 \\ \geq \text{Order of an element } \alpha \in Z_p^* = \text{Ord}(\alpha) = a \text{ divisor of } p-1 \\ \geq \alpha \text{ is a generator / primitive element of } Z_p^* \text{ if } \text{Ord}(\alpha) = \phi(p) = p-1 \\ \checkmark \text{ Then } Z_p^* = \{\alpha^i \mid i = 0, 1, ..., p-2\} : \text{cyclic group} \\ \checkmark \text{ For any } y \in Z_p^*, \text{ there exists an integer } x \in [0, p-2] \text{ such that } y \\ = \alpha^x \mod p \end{array}$

Let p be a prime and q be a prime divisor of p-1, I.e., p-1= kq
Let g be an element of order q, I.e., g ≠ 1and g^q = 1 mod p
<g> = {gⁱ | i = 0, 1, ..., q-1} ⊂ Z_p^{*} : a multiplicative subgroup of Z_p^{*}
That is, for any y ∈ <g>, there exists an integer x ∈ [0, q-1] such that y = g^x mod p

Cyclic Group

 \Rightarrow Example: p = 13>Z₁₃ = {0, 1, 2, ..., 12} $> Z_{13}^* = \{1, 2, ..., 12\}; |Z_p^*| = 12$ $\geq \alpha = 6$: a generator of Z_{13}^* i 0 1 2 3 4 5 6 7 8 9 10 11 αⁱ mod 13 1 6 10 8 9 2 12 7 3 5 4 11 **>** Order of $x \in Z_{13}^*$: a divisor of 12 = 2.2.3x 1 2 3 4 5 6 7 8 9 10 11 12 Ord(x) 1 12 3 6 4 12 12 4 3 6 12 2

***** Exercise 4. Find the order of $x \in Z_{31}^*$

Z₁₃*

а

		r			-	i	1	r			1		
a^b	1	2	3	4	5	6	7	8	9	10	11	12	Ord(a)
1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	2	4	8	3	6	12	11	9	5	10	7	1	12
3	3	9	1	3	9	1	3	9	1	3	9	1	3
4	4	3	12	9	10	1	4	3	12	9	10	1	6
5	5	12	8	1	5	12	8	1	5	12	8	1	4
6	6	10	8	9	2	12	7	3	5	4	11	1	12
7	7	10	5	9	11	12	6	3	8	4	2	1	12
8	8	12	5	1	8	12	5	1	8	12	5	1	4
9	9	3	1	9	3	1	9	3	1	9	3	1	3
10	10	9	12	3	4	1	10	9	12	3	4	1	6
11	11	4	5	3	7	12	2	9	8	10	6	1	12
12	12	1	12	1	12	1	12	1	12	1	12	1	2

b

Homework #5

Solve the exercises appeared in this lecture.

- 1. Exercise 1 on finding prime numbers
- 2. Exercise 2 on Euclidean / Extended Euclidean algorithm
- 3. Exercise 3 on Chinese Remainder Theorem
- 4. Exercise 4 on Order in cyclic group