Introduction to Information Security

Lecture 2: Classical Ciphers

2007. 6.

Prof. Byoungcheon Lee
sultan (at) joongbu . ac . kr

Information and Communications University

Contents

1. History of cryptographic research
2. Substitution ciphers
\checkmark Caesar ciphers
\checkmark Affine ciphers
\checkmark Monoalphabetic substitution cipher
\checkmark Homophonic substitution cipher
\checkmark Polyalphabetic substitution cipher
\checkmark Vigenere cipher
\checkmark Hill cipher
$\checkmark \quad$ One-time pad
3. Transposition ciphers
\checkmark Transposition cipher
\checkmark scytale cipher
4. Product ciphers
5. History of Cryptologic Research

History of Cryptologic Research

1900BC : Non-standard hieroglyphics
1500BC : Mesopotamian pottery glazes
50BC : Caesar cipher
1518 : Trithemius' cipher book
1558 : Keys invented
1583 : Vigenere's book
1790 : Jefferson wheel
1854 : Playfair cipher
1857 : Beaufort's cipher
1917 : Friedman's Riverbank Labs
1917 : Vernam one-time pads

History of Cryptologic Research

1919 : Hegelin machines
1921 : Hebern machines
1929 : Hill cipher
1973 : Feistel networks
1976 : Public key cryptography
1979 : Secret sharing
1985 : Zero knowledge
1990 : Differential cryptanalysis
1994 : Linear cryptanalysis
1997 : Triple-DES
1998 ~ 2001 : AES

History of Cryptologic Research

Using Cryptologic Technology

- Before modern crypto : limited usage
- National security, diplomatic, war
- Used by limited people
- Researched by limited people
- Current crypto : widely open, standardized, commerce
- Internet, e-commerce
- Anybody is using
- Research and development by anyone

Scytale

as bc cy dt ea fl ge

Enigma

Article at
http:/len.wikipedia.org/wiki/Eniqma machine

Lorenz SZ42 Cipher Machine

Classical Encryption Techniques

\square Basic building blocks of all encryption techniques
$>$ Substitution: replacement
$>$ Transposition: relocation
\square Substitution ciphers
> Caesar cipher
$>$ Monoalphabetic ciphers
$>$ Playfair cipher
$>$ Hill cipher
$>$ Polyalphabetic ciphers: Vigenere cipher
> Vernam cipher/One-time pad: perfect cipher
\square Transposition techniques
$>$ Rotor machines: Enigma, Purple

2. Substitution Cipher

Caesar ciphers
Affine ciphers
Hill cipher
Monoalphabetic substitution cipher
Homophonic substitution cipher
Polyalphabetic substitution cipher
Vigenere cipher
One-time pad

Caesar Ciphers

Julius Caesar, the Roman emperor Also known as shift cipher

Mathematically assign numbers to each alphabet

a	b	c	d	e	f	g	h	i	j	k	\ldots	z
0	1	2	3	4	5	6	7	8	9	10	\ldots	25

Caesar cipher :

$$
\begin{aligned}
& C=\mathrm{E}_{K}(\mathrm{M})=M+K \bmod 26 \\
& K=3 \\
& M=\mathrm{D}_{K}(\mathrm{C})=C-K \bmod 26 \\
& K=3
\end{aligned}
$$

Caesar Ciphers

Define transformation as:

a	b	c	d	e	f	g	h	i	j	k	\ldots	z
D	E	F	G	H	I	J	K	L	M	N	\ldots	C

Encryption example

$$
\begin{array}{lllllllllll}
\mathbf{i} & \mathbf{n} & \mathbf{f} & \mathbf{o} & \mathbf{r} & \mathbf{m} & \mathbf{a} & \mathbf{t} & \mathbf{i} & \mathbf{o} & \mathbf{n} \\
\mathbf{L} & \mathbf{Q} & \mathbf{I} & \mathbf{R} & \mathbf{U} & \mathbf{P} & \mathbf{D} & \mathbf{W} & \mathbf{L} & \mathbf{R} & \mathbf{Q}
\end{array}
$$

Weakness

- Key space is too short - only 26 possible keys
- Brute force search

Example: Break ciphertext "L ORYH LFX"

Affine Ciphers

Generalization of Caesar cipher

Encryption

$$
\begin{aligned}
& C=E_{K}(M)=K_{1} M+K_{2} \bmod 26 \\
& \operatorname{gcd}\left(K_{1}, 26\right)=1
\end{aligned}
$$

Decryption

$$
M=D_{K}(C)=\left(C-K_{2}\right) K_{1}^{-1} \bmod 26
$$

Example: decrypt the following ciphertext
WZDUY ZZYQB OTHTX ZDNZD KWQHI BYQBP WZDUY ZXZDSS
How? Using English character frequency analysis...

English Character Frequencies

Letter Frequency(\%) Letter Frequency(\%) Letter Frequency(\%)

e	12.7	d	4.3	p	1.9
t	9.1	l	4.0	b	1.5
a	8.2	c	2.8	v	1.0
o	7.5	u	2.8	k	0.8
i	7.0	m	2.4	j	0.2
n	6.7	w	2.3	x	0.1
s	6.3	f	2.2	q	0.1
h	6.1	g	2.0	z	0.1
r	6.0	y	2.0		

(1) $\operatorname{Pr}(\mathrm{e})=0.12$, (2) $\operatorname{Pr}(\mathrm{t}, \mathrm{a}, \mathrm{o}, \mathrm{i}, \mathrm{n}, \mathrm{s}, \mathrm{h}, \mathrm{r})=0.06 \sim 0.09$
(3) $\operatorname{Pr}(\mathrm{d}, \mathrm{l})=0.04$ (4) $\operatorname{Pr}(\mathrm{c}, \mathrm{u}, \mathrm{m}, \mathrm{w}, \mathrm{f}, \mathrm{g}, \mathrm{y}, \mathrm{p}, \mathrm{b})=0.015 \sim 0.023$
(5) $\operatorname{Pr}(v, k, j, x, q, z)<=0.01$

Affine Ciphers

Z occurs 8 times
D occurs 5 times
Y occurs 4 times
W,Q,B occur 3 times
\rightarrow E,T,A,O,I ???
\rightarrow E,T,A,O,I ???
\rightarrow E,T,A,O,I ???
\rightarrow E,T,A,O,I ???
$Z \rightarrow E, D \rightarrow T:$
try to solve

$$
\begin{aligned}
& 25=4 K_{1}+K_{2} \bmod 26 \\
& 3=19 K_{1}+K_{2} \bmod 26 \\
& K_{1}=2, K_{2}=17 \longleftarrow \text { reject }
\end{aligned}
$$

Try possible solutions until you get meaningful plaintext
Exercise: try yourself

Hill Cipher

$$
\mathbf{e}_{\mathrm{K}}(\mathbf{x}):\left(\mathbf{y}_{1}, \mathbf{y}_{2}, \ldots, \mathbf{y}_{\mathrm{m}}\right)=\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{m}}\right) K
$$

$$
\text { where } K \text { is } m \times m \text { matrix and } \operatorname{gcd}(\operatorname{det} K, 26)=1
$$

$$
d_{k}(y)=y K^{-1}
$$

$$
(E x) K=\left|\begin{array}{rr}
11 & 8 \\
3 & 7
\end{array}\right| \quad K^{-1}=\left|\begin{array}{rr}
7 & 18 \\
23 & 11
\end{array}\right|
$$

$$
\mathrm{x}: \mathbf{j u l y},(\mathbf{j}, \mathbf{u})=(9,20),(\mathbf{l}, \mathbf{y})=(11,24)
$$

$$
(9,20) K=(3,4)=(D, E)
$$

$$
(11,24) K=(11,22)=(\mathbf{L}, \mathbf{W})
$$

Monoalphabetic Substitution Ciphers

Example : 1-1 Substitution rule

$$
\begin{aligned}
& \text { EGLTBNMQPAOWCRXHIYZDSFJKUV}
\end{aligned}
$$

Example : Encryption

i	n	f	o	r	m	a	t	i	o	n
P	R	N	X	Y	C	E	D	P	X	R

Key space : 26!

Cryptanalysis: Using English character frequency analysis...

Homophonic Substitution Ciphers

Letters which occur frequently may be mapped into more than one letter in the ciphertext to flatten the frequency distribution.

Alphabet is mapped into the numbers 0 to 99 For example,
$\mathrm{E}(12.7 \%) \rightarrow$ 17, 19, 23, 47, 64
$\mathrm{A}(8.2 \%) \rightarrow 8,20,25,49$
$\mathbf{R (6 . 0 \%) ~} \rightarrow$ 1, 29, 65
$\mathrm{T}(9.1 \%) \rightarrow 16,31,85,87$

Polyalphabetic Substitution Ciphers

Hide the frequency distribution by making multiple substitutions. Apply d different permutations.

$$
\begin{aligned}
& m=m_{1}, m_{2}, \ldots, m_{d}, m_{d+1}, m_{d+2}, \ldots, m_{2 d}, \ldots \\
& E_{K}(m)=\pi_{1}\left(m_{1}\right), \pi_{2}\left(m_{2}\right), \ldots, \pi_{d}\left(m_{d}\right), \pi_{1}\left(m_{d+1}\right), \pi_{2}\left(m_{d+2}\right), \ldots, \pi_{d}\left(m_{2 d}\right), \ldots
\end{aligned}
$$

- Vigenere cipher
- Beauford cipher

Polyalphabetic Substitution Ciphers

Vigenère Ciphers

- Multiple caesar cipher

$$
\begin{aligned}
& k=\left(k_{1}, k_{2}, \ldots, k_{d}\right),|k|=26^{d} \\
& c=E_{k}\left(m_{1}, m_{2}, \ldots, m_{d}\right)=\left(c_{1}, c_{2}, \ldots, c_{d}\right)=m_{i}+k_{i} \bmod 26 \text { for } i=1, \ldots, d \\
& m=D_{k}\left(c_{1}, c_{2}, \ldots, c_{d}\right)=\left(m_{1}, m_{2}, \ldots, m_{d}\right)=c_{i}-k_{i} \bmod 26 \text { for } i=1, \ldots, d
\end{aligned}
$$

Beauford ciphers (used in US civil war)

$$
\begin{aligned}
& k=\left(k_{1}, k_{2}, \ldots, k_{d}\right),|k|=26^{d} \\
& c=E_{k}\left(m_{1}, m_{2}, \ldots, m_{d}\right)=\left(c_{1}, c_{2}, \ldots, c_{d}\right)=k_{i}-m_{i} \bmod 26 \text { for } i=1, \ldots, d \\
& m=D_{k}\left(c_{1}, c_{2}, \ldots, c_{d}\right)=\left(m_{1}, m_{2}, \ldots, m_{d}\right)=k_{i}-c_{i} \bmod 26 \text { for } i=1, \ldots, d
\end{aligned}
$$

Vigenère Ciphers

Look-up table for Vigenère Ciphers

키워드영	a	b	c	d	e	f	g	h	i	i	k	1	m	n	0	p	q	r	S	t	u	V	W	X	y	Z
A	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z
B	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A
C	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B
D	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C
E	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D
F	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E
G	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F
H	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G
I	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H
J	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I
K	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J
L	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K
M	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L
N	N	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M
O	O	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N
P	P	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O
Q	Q	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P
R	R	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q
S	S	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R
T	T	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S
U	U	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T
V	V	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U
W	W	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V
X	X	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W
Y	Y	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X
Z	Z	A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y

Vigenère Ciphers

Plaintext thiscryptosystemisnotsecure Keyword SECUR I TYSECUR I TYSECUR I TYSEC Ciphertext LLKMTZRNLSUS J BXKAWP I KAXAMVG

Polyalphabetic Substitution Ciphers

Cryptanalysis of polyalphabetic substitution ciphers

1. Determine the period
2. Determine each substitution keys

How to determine the period?

1. Kasiski method : use repetitions in the ciphertext
2. Index of coincidence by Friedman: compute the index of coincidence and estimate the period

Refer to
http://www.rhodes.edu/mathcs/faculty/barr/Math103CUSummer04/FriedmanKasiski.pdf

Kasiski Method

Example: Vigenère Ciphers

```
key: deceptivedeceptivedeceptive
plaintext: wearediscoveredsaveyourself
ciphertext:ZICVTWQNGRZGVTWAVZHCQYGLMGJ
```

Method developed by Kasiski

- Letter groups in ciphertext are repeated because repeated letter groups in the plaintext line up with the keyword.
- If letter groups repeated in ciphertext, then keyword length may be a divisor of their separations.
- in this example "VTW" is repeated in 9 letters apart
- suggests size of d is 3 or 9

Index of Coincidence

The index of coincidence for a (cipher)text is the probability that two letters selected from it are identical. It is denoted I.

If the text has n_{0} A's, n_{1} B's, n_{2} C's, \ldots, n_{25}
Z's, and

$$
n=n_{0}+n_{1}+n_{2}+\cdots+n_{25}
$$

is the number of letters in the text, then|

$$
I=\frac{n_{0}\left(n_{0}-1\right)+n_{1}\left(n_{1}-1\right)+\cdots+n_{25}\left(n_{25}-1\right)}{n(n-1)} .
$$

Index of Coincidence

For a typical English document, $\mathrm{I}=0.0656$

letter	count	letter	count	
A	141	N	119	
B	36	\bigcirc	132	
C	36	P	28	$\operatorname{Prob}\binom{$ identical }{ pair }
D	103	Q	1 95	$=\underline{C(141,2)+C(36,2)+\cdots+C(23,2)+C(0,2)}$
E	188	R	95	$=\frac{C(1679,2)}{}$
F	34	T	182	$=\underline{141(141-1)+36(36-1)+\cdots+0(0-1)}$
H	102	U	182 59	1679(1679-1)
I	123	V	13	$=\frac{184838}{2817362} \approx 0.0656$
J	4	W	55	2817362 20.0656
K	18	X	3	
L	56	Y	2	
M	27	Z	0	

Index of Coincidence

For a randomized (ideally encrypted) document, I=0.0384615

Example What is the index of coincidence for a collection of 2600 letters consisting of 100 A's, 100 B's, 100 C's, ..., 100 Z's?

Answer:

$$
\begin{aligned}
\text { Prob } & \binom{\text { identical }}{\text { pair }} \\
& =\frac{C(100,2)+C(100,2)+\cdots+C(100,2)+C(100,2)}{C(2600,2)} \\
& =\frac{26 \cdot 100 \cdot 99}{2600 \cdot 2599} \\
& \approx \frac{1}{26} \\
& =0.0384615
\end{aligned}
$$

Index of Coincidence

We can estimate the keyword length using the index of coincidence.

Polyalphabeticity Measure for English

k : Estimated keyword length

Index of Coincidence

We can estimate the keyword length using the index of coincidence.

$$
\begin{aligned}
I & \approx \frac{S+D}{C(n, 2)} \\
& =\frac{k \cdot \frac{\left.\frac{n}{k} \frac{n}{k}-1\right)}{2 \cdot 1} \cdot 0.065+\frac{k(k-1)}{2 \cdot 1}\left(\frac{n}{k}\right)^{2} \cdot 0.03846}{\frac{n(n-1)}{2 \cdot 1}} \\
& =\frac{(n-k) 0.065+n(k-1) 0.03846}{k(n-1)}
\end{aligned}
$$

Solve for k :

$$
k \approx \frac{0.0265 n}{(0.065-I)+n(I-0.0385)}
$$

Index of Coincidence

Example: Estimate the keyword length of the following distribution in ciphertext

letter	count	letter	count
A	60	N	28
B	50	O	83
C	42	P	44
D	64	Q	69
E	51	R	13
F	63	S	29
G	19	T	66
H	48	U	87
I	56	V	63
J	67	W	19
K	23	X	43
L	45	Y	39
M	44	Z	67

Solution There are $n=1282$ letters.

$$
\begin{aligned}
I & =\frac{60 \cdot 59+50 \cdot 49+\cdots+67 \cdot 66}{1282 \cdot 1281} \\
& =\frac{35761}{821121} \\
& =0.04355
\end{aligned}
$$

$$
\begin{aligned}
k & \approx \frac{0.0265 \cdot 1282}{(0.065-0.04355)+1282(0.04355-0.03846)} \\
& =5.197
\end{aligned}
$$

Estimated keyword length is 5

One-time Pad (Vernam cipher)

* Use a random key as long as the message size and use the key only once
Unbreakable
* Since ciphertext bears no statistical relationship to the plaintext
* Since for any plaintext \& any ciphertext there exists a key mapping one to other
* Have the problem of safe distribution of key

Ex) Binary alphabet

3. Transposition Ciphers

Transposition cipher
Scytale cipher
Rotor machines

Transposition Ciphers

\square Rearrange characters of plaintext to produce ciphertext
Frequency distribution of the characters is not changed by encryption
\square Example:

Encryption permutation

1	2	3	4	5	6
3	5	1	6	4	2

Decryption permutation

1	2	3	4	5	6
3	6	1	5	2	4

plaintext	i n f o rma t i o n s e cur i t y x y z a b
ciphertext	FR I MON I NA S OTU I E TRCYAYBZX

Transposition Ciphers

$>$ Cryptanalysis :
$>$ Period d is guessed by trying possible periods
$>$ A knowledge of the most frequent pairs and triples in a language is used with anagramming.
> Use language characteristics
$>$ Frequent pairs on a relative scale to 10
$>$ TH : 10.00, HE : 9.50, IN : 7.17, ER : 6.65, RE : 5.92
$>$ Frequent triples on a relative scale to 10
$>$ THE : 10.00, AND : 2.81, TIO : 2.24, ATI : 1.67

Exercise: decrypt the following ciphertext
LDWEOHETTHSESTRUHTELOBSEDEFEIVNT

Scytale Cipher

$$
\left(\begin{array}{l|l|l|l|l|l|l}
a & b & c & d & e & f \\
s & c & y & t & a & l & e \\
\hline
\end{array}\right.
$$

as bc cy dt ea fl ge

4. Product Ciphers

ADFGVX
Shannon
SP Network

ADFGVX

$>$ Product of substitution and permutation

Substitution table

	A	D	F	G	V	X
A	f	x	a	9	u	1
D	n	g	0	l	d	o
F	5	b	k	2	h	z
G	m	j	s	y	t	v
V	7	4	3	e	8	i
X	c	w	q	6	r	p

$c \rightarrow$ XA

Substitution result

c	o	n	v	e	n	t	i	o	n	a	l
X	D	D	G	V	D	G	V	D	D	A	D
A	X	A	X	G	A	V	X	X	A	F	G

c	r	y	p	t	o	g	r	a	p	h	y
X	X	G	X	G	D	D	X	A	X	F	G
A	V	G	X	V	X	D	V	F	X	V	G

ADFGVX

Permutation table

C	I	P	H	E	R
$\mathbf{1}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{6}$
X	A	Deyword	X	D	A
G	X	V	G	D	A
G	V	V	X	D	X
D	A	A	F	D	G
X	A	X	V	G	G
X	X	G	V	D	X
D	D	X	V	A	F
X	X	F	V	G	G

Ciphertext

XGGDXXDX
DDDDGDAG
XGXFVVVV
AXVAAXDX
DVVAXGXF
AAXGFXFG

Shannon's Proposal

- C. Shannon, "Communication Theory for Secrecy Systems", 1949
$>$ Compose different kind of simple and insecure ciphers to create complex and secure cryptosystems \rightarrow called "product cipher"
$>$ Incorporate confusion and diffusion
$>$ Substitution-Permutation Network
http://www.bell-labs.com/news/2001/february/26/1.html
http://cm.bell-labs.com/cm/ms/what/shannonday/paper.html

Claude Shannon

Confusion and Diffusion

\checkmark Confusion (substitution) :
$>$ The ciphertext statistics should depend on the plaintext statistics in a manner too complicated to be exploited by the enemy cryptanalyst
$>$ Makes relationship between ciphertext and key as complex as possible
\rightarrow Diffusion (permutation):
$>$ Each digit of the plaintext should influence many digits of the ciphertext, and/or
$>$ Each digit of the secret key should influence many digits of the the ciphertext.
$>$ Dissipates statistical structure of plaintext over bulk of ciphertext

SP Network

-Substitution-Permutation network
$>$ Substitution (S-box) : secret key is used
$>$ Permutation (P-box) : no secret key, fixed topology
-Provide confusion and diffusion
S-P networks are expected to have
$>$ Avalanche property: a single input bit change should force the complementation of approximately half of the output bits
$>$ Completeness property: each output bit should be a complex function of every input bits

- Theoretical basis of modern block ciphers

SP Network

Kerckhoff's Principle

- Auguste Kerckhoff, 1883
$>$ A cryptosystem should be secure even if everything about the system, except the key, is public knowledge.
$>$ Eric Raymond extends this principle in support of open source software, saying "Any security software design that doesn't assume the enemy possesses the source code is already untrustworthy; therefore, never trust closed source".
$>$ The majority of civilian cryptography makes use of publiclyknown algorithms. By contrast, ciphers used to protect classified government or military information are often kept secret

Homework \#2

1. Design and implement a C program for encryption, decryption, and cryptanalysis of the affine cipher. For the cryptanalysis your program must not use the enumeration of all possible keys but should use the frequency of characters to make optimal guesses about the key.
2. Decryption of Vigenère Ciphers. Solve the problem 9 in page 61 of the textbook.
